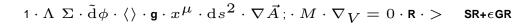
# Special relativity and steps towards general relativity: $\epsilon$ GR

(c) CC-BY-SA-3.0

# 1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric g



1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric g

2.  $\forall$  spacetime point  $\mathbf{x} \exists$  4D Minkowski tangent space  $T_{\mathbf{x}}M$  at  $\mathbf{x}$ 

1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric g

2.  $\forall$  spacetime point  $\mathbf{x} \exists$  4D Minkowski tangent space  $T_{\mathbf{x}}M$  at  $\mathbf{x}$ 

= vector space (e.g. 4-momentum vectors)

1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric g

2.  $\forall$  spacetime point  $\mathbf{x} \exists$  4D Minkowski tangent space  $T_{\mathbf{x}}M$  at  $\mathbf{x}$ 

= vector space,  $\mathbf{g} \Rightarrow$  lengths of vectors in  $T_{\mathbf{x}}M$ 

1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric g

2.  $\forall$  spacetime point  $\mathbf{x} \exists$  4D Minkowski tangent space  $T_{\mathbf{x}}M$  at  $\mathbf{x}$ 

- = vector space,  $\mathbf{g} \Rightarrow$  lengths of vectors in  $T_{\mathbf{x}}M$
- 3. also,  $\forall \mathbf{x} \in M, \exists \mathsf{4D} \mathsf{Mink.} \mathsf{ cotangent space } T^*_{\mathbf{x}}M$

- 1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric **g**
- 2.  $\forall$  spacetime point  $\mathbf{x} \exists$  4D Minkowski tangent space  $T_{\mathbf{x}}M$  at  $\mathbf{x}$
- = vector space,  $\mathbf{g} \Rightarrow$  lengths of vectors in  $T_{\mathbf{x}}M$
- 3. also,  $\forall \mathbf{x} \in M, \exists \mathsf{4D} \mathsf{Mink.} \mathsf{ cotangent space } T^*_{\mathbf{x}}M$
- = dual vector space (think: contour map, gradients)

1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric g

2.  $\forall$  spacetime point  $\mathbf{x} \exists$  4D Minkowski tangent space  $T_{\mathbf{x}}M$  at  $\mathbf{x}$ 

- = vector space,  $\mathbf{g} \Rightarrow$  lengths of vectors in  $T_{\mathbf{x}}M$
- 3. also,  $\forall \mathbf{x} \in M, \exists \mathsf{4D} \mathsf{Mink.} \mathsf{ cotangent space } T^*_{\mathbf{x}}M$
- = space of one-forms,  $\mathbf{g}^{-1} \Rightarrow$  "lengths"

1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric g

2.  $\forall$  spacetime point  $\mathbf{x} \exists$  4D Minkowski tangent space  $T_{\mathbf{x}}M$  at  $\mathbf{x}$ 

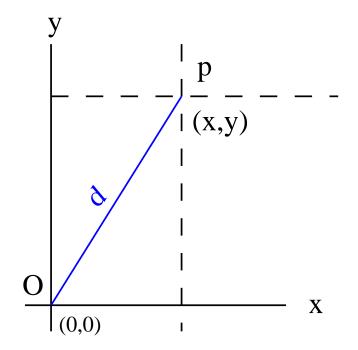
- = vector space,  $\mathbf{g} \Rightarrow$  lengths of vectors in  $T_{\mathbf{x}}M$
- 3. also,  $\forall \mathbf{x} \in M, \exists \mathsf{4D} \mathsf{Mink.} \mathsf{ cotangent space } T^*_{\mathbf{x}}M$
- = space of one-forms,  $\mathbf{g}^{-1} \Rightarrow$  "lengths"

duality in a basis of  $T_{\bf x}M$  and a basis of  $T_{\bf x}^*M$  usually defined using  $\delta^{\mu}_{\ \nu}$ 

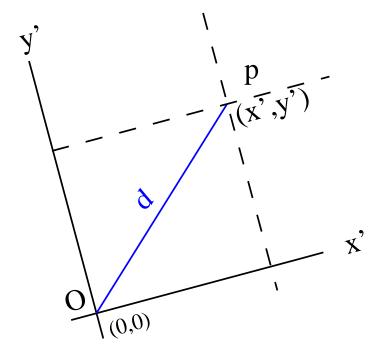
- 1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric g
- 2.  $\forall$  spacetime point  $\mathbf{x} \exists$  4D Minkowski tangent space  $T_{\mathbf{x}}M$  at  $\mathbf{x}$
- = vector space,  $\mathbf{g} \Rightarrow$  lengths of vectors in  $T_{\mathbf{x}}M$
- 3. also,  $\forall \mathbf{x} \in M, \exists \mathsf{4D} \mathsf{Mink.} \mathsf{ cotangent space } T^*_{\mathbf{x}}M$
- = space of one-forms,  $\mathbf{g}^{-1} \Rightarrow$  "lengths"
- 2+3. vector–one-form duality in a basis:  $\delta^{\mu}_{\nu}$

- 1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric g
- 2.  $\forall$  spacetime point  $\mathbf{x} \exists$  4D Minkowski tangent space  $T_{\mathbf{x}}M$  at  $\mathbf{x}$
- = vector space,  $\mathbf{g} \Rightarrow$  lengths of vectors in  $T_{\mathbf{x}}M$
- 3. also,  $\forall \mathbf{x} \in M, \exists \mathsf{4D} \mathsf{Mink.} \mathsf{ cotangent space } T^*_{\mathbf{x}}M$
- = space of one-forms,  $\mathbf{g}^{-1} \Rightarrow$  "lengths"
- 2+3. vector–one-form duality in a basis:  $\delta^{\mu}_{\nu}$
- 4. <u>w:Levi-Civita connection</u>  $\leftarrow$  metric

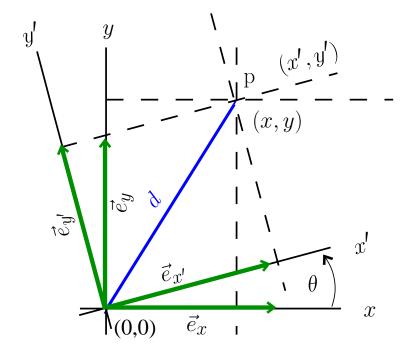
- 1. spacetime = 4D (curved) pseudo-Riemannian manifold M with metric **g**
- 2.  $\forall$  spacetime point  $\mathbf{x} \exists$  4D Minkowski tangent space  $T_{\mathbf{x}}M$  at  $\mathbf{x}$
- = vector space,  $\mathbf{g} \Rightarrow$  lengths of vectors in  $T_{\mathbf{x}}M$
- 3. also,  $\forall \mathbf{x} \in M, \exists \mathsf{4D} \mathsf{Mink.} \mathsf{ cotangent space } T^*_{\mathbf{x}}M$
- = space of one-forms,  $\mathbf{g}^{-1} \Rightarrow$  "lengths"
- 2+3. vector–one-form duality in a basis:  $\delta^{\mu}_{\nu}$
- 4. <u>w:Levi-Civita connection</u>  $\leftarrow$  metric
- 5. metric  $\leftarrow$  Einstein field equations



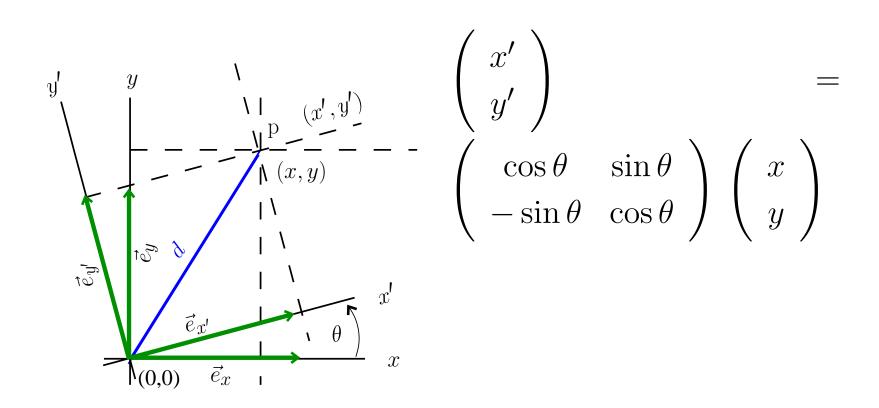
 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\,\boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{>}\quad\mathbf{SR+}\epsilon\mathbf{GR}$ 

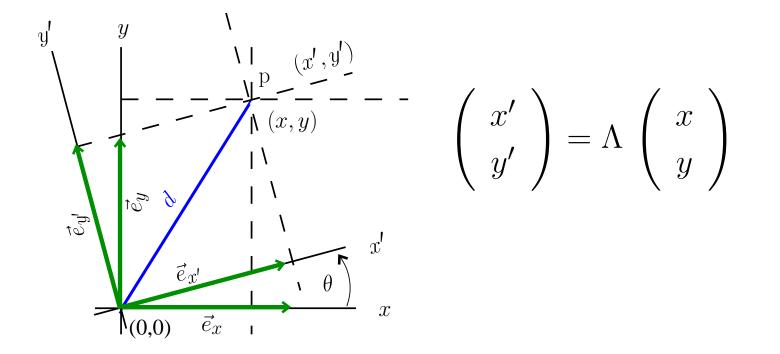


 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\mathrm{SR+}\epsilon\mathrm{GR}$ 

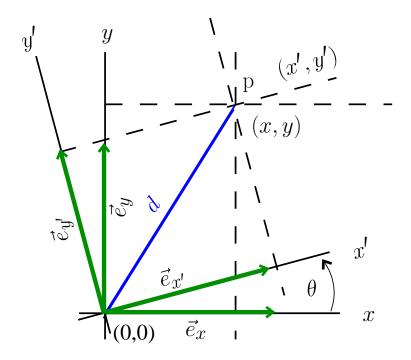


 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\boldsymbol{\phi}\cdot\boldsymbol{\langle}\boldsymbol{\rangle}\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\\ \cdot\ \boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{\boldsymbol{\rangle}}\quad \mathbf{SR+}\epsilon\mathbf{GR}$ 



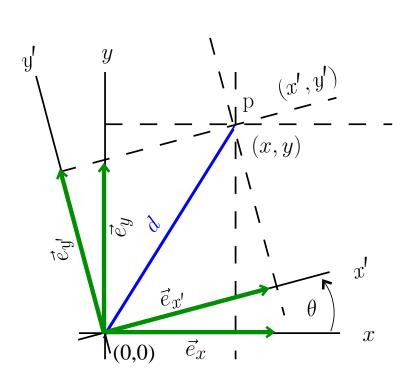


 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\mathrm{SR+}\epsilon\mathrm{GR}$ 



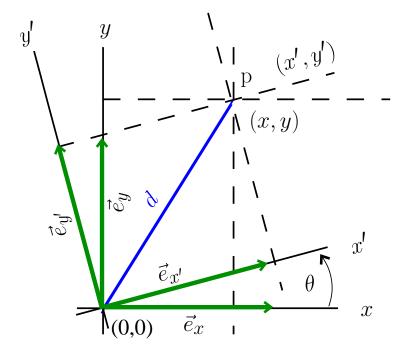
but 
$$\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\,\mathrm{SR+}\epsilon\mathrm{GR}$ 



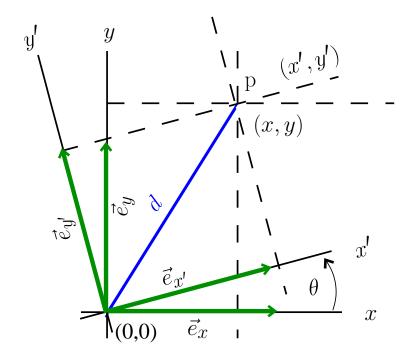
$$\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} = \\ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \\ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\boldsymbol{\phi}\cdot\boldsymbol{\langle}\boldsymbol{\rangle}\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\,\cdot\ \boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{\boldsymbol{\rangle}}\quad \mathbf{SR+}\epsilon\mathbf{GR}$ 



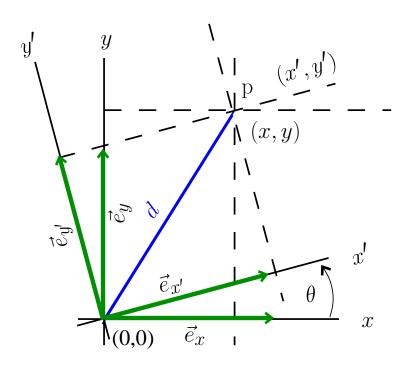
$$\vec{e}_{x'} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \vec{e}_x + \\ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \vec{e}_y$$

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\,\mathrm{SR+}\epsilon\mathrm{GR}$ 

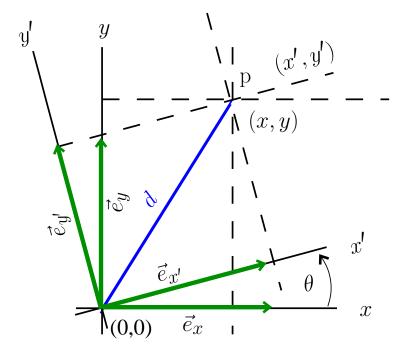


$$\vec{e}_{x'} = \Lambda^x_{x'} \, \vec{e}_x + \Lambda^y_{x'} \, \vec{e}_y$$

 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\boldsymbol{\phi}\cdot\boldsymbol{\langle}\boldsymbol{\rangle}\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\ \boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{\boldsymbol{\rangle}}\quad \mathbf{SR+}\epsilon\mathbf{GR}$ 

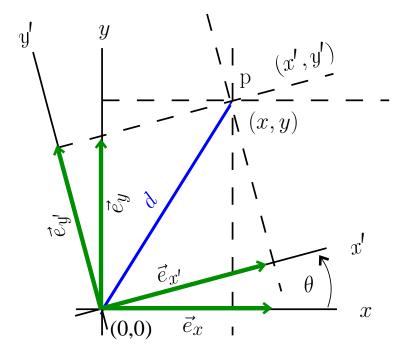


also:  $\begin{pmatrix} -\sin\theta\\\cos\theta \end{pmatrix}$  $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} +$  $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 



$$\vec{e}_{y'} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \vec{e}_x + \\ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \vec{e}_y$$

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\,\mathrm{SR+}\epsilon\mathrm{GR}$ 



summary:  $\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y,$   $\vec{e}_{y'} = \Lambda_{y'}^x \vec{e}_x + \Lambda_{y'}^y \vec{e}_y,$ where  $\Lambda_{\beta'}^{\alpha} :=$  element of inverse of  $\Lambda_{\beta}^{\alpha'},$  $\begin{pmatrix} x'\\ y' \end{pmatrix} = \Lambda \begin{pmatrix} x\\ y \end{pmatrix}$ 

 $1\cdot\Lambda \ \Sigma\cdot \widetilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nablaec{A};\cdot M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle$  SR+ $\epsilon$ GR

$$\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y, \qquad \vec{p} \to \mathcal{O}' \begin{pmatrix} x' \\ y' \end{pmatrix} = \Lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\mathrm{SR+}\epsilon\mathrm{GR}$ 

$$\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y, \qquad \vec{p} \to_{\mathcal{O}'} \begin{pmatrix} x' \\ y' \end{pmatrix} = \Lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

 $\vec{p} = \sum_{i} p^{i} \vec{e}_{i}$ 

$$\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y, \qquad \vec{p} \to \mathcal{O}' \left( \begin{array}{c} x' \\ y' \end{array} \right) = \Lambda \left( \begin{array}{c} x \\ y \end{array} \right)$$

 $\vec{p} = p^i \vec{e_i}$  (w:Einstein summation)

$$\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y, \qquad \vec{p} \to_{\mathcal{O}'} \begin{pmatrix} x' \\ y' \end{pmatrix} = \Lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

 $\vec{p} = p^i \vec{e_i}$  (w:Einstein summation) Einstein summation:

• coordinates like  $r, \theta, x, y$ : not a sum:  $\Lambda^x_{y'} \vec{e}_x$ 

• repeated up-down coordinate indices like  $i, j \in \{0, 1, 2\}$ or  $\alpha, \beta, \gamma, \lambda, \mu, \nu \in \{0, 1, 2, 3\}$ :

sum:  $\Lambda_{j'}^i \vec{e_i} := \Lambda_{y'}^x \vec{e_x} + \Lambda_{y'}^y \vec{e_y}$  for a 2D manifold, coords x, y

$$\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y, \qquad \vec{p} \to \mathcal{O}' \left( \begin{array}{c} x' \\ y' \end{array} \right) = \Lambda \left( \begin{array}{c} x \\ y \end{array} \right)$$

 $\vec{p} = p^i \vec{e_i}$  (w:Einstein summation)

new basis vectors = sum of inverse  $\Lambda \times$  old vectors

$$\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y, \qquad \vec{p} \to \mathcal{O}' \left( \begin{array}{c} x' \\ y' \end{array} \right) = \Lambda \left( \begin{array}{c} x \\ y \end{array} \right)$$

 $\vec{p} = p^i \vec{e_i}$  (w:Einstein summation) new basis vectors = sum of inverse  $\Lambda \times$  old vectors  $\vec{e_{\mu'}} = \sum_{\nu} \Lambda^{\nu}_{\mu'} \vec{e_{\nu}}$ 

$$\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y, \qquad \vec{p} \to \mathcal{O}' \left( \begin{array}{c} x' \\ y' \end{array} \right) = \Lambda \left( \begin{array}{c} x \\ y \end{array} \right)$$

 $\vec{p} = p^i \vec{e}_i$  (w:Einstein summation) new basis vectors = sum of inverse  $\Lambda \times$  old vectors  $\vec{e}_{\mu'} = \Lambda^{\nu}_{\ \mu'} \vec{e}_{\nu}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \cdot M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad SR+\epsilon GR$ 

$$\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y, \qquad \vec{p} \to \mathcal{O}' \left( \begin{array}{c} x' \\ y' \end{array} \right) = \Lambda \left( \begin{array}{c} x \\ y \end{array} \right)$$

 $\vec{p} = p^i \vec{e_i}$  (w:Einstein summation) new basis vectors = sum of inverse  $\Lambda \times$  old vectors new coords of vector  $\vec{p} = \Lambda \times$  old coords of same vector  $\vec{p}$ 

$$\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y, \qquad \vec{p} \to_{\mathcal{O}'} \begin{pmatrix} x' \\ y' \end{pmatrix} = \Lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

 $\vec{p} = p^i \vec{e_i}$  (w:Einstein summation)

new basis vectors = sum of inverse  $\Lambda \times$  old vectors

vector invariance requires contravariance of its coords "contra" = inverse of change of basis vectors

$$\vec{e}_{x'} = \Lambda_{x'}^x \vec{e}_x + \Lambda_{x'}^y \vec{e}_y, \qquad \vec{p} \to \mathcal{O}' \begin{pmatrix} x' \\ y' \end{pmatrix} = \Lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

 $\vec{p} = p^i \vec{e_i}$  (w:Einstein summation)

new basis vectors = sum of inverse  $\Lambda \times$  old vectors

vector invariance requires contravariance of its coords "contra" = inverse of change of basis vectors

- $\vec{p}$  is invariant: no dependence on coords
- $\vec{p}$  is contravariant:  $p^i$  change inversely to  $\vec{e_i}$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

# **GR: coord. transf.: 1-forms**

$$\phi = \text{scalar field} = \phi(x, y) \equiv \phi(x', y')$$
  
write  $\phi_{,x} := \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_x$ 

 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\boldsymbol{\phi}\cdot\boldsymbol{\langle}\boldsymbol{\rangle}\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\,\boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{\boldsymbol{\rangle}}\quad \mathbf{SR+}\epsilon\mathbf{GR}$ 

# **GR: coord. transf.: 1-forms**

 $\phi = \text{scalar field} = \phi(x, y) \equiv \phi(x', y')$ write  $\phi_{,x} := \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_x$ What is the relation between  $(\phi_{,x'}, \phi_{,y'})$ and  $(\phi_{,x}, \phi_{,y})$ ?

 $\phi = \text{scalar field} = \phi(x, y) \equiv \phi(x', y')$ write  $\phi_{,x} := \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_x$ 

 $\phi$  depends either on x and y, or on x' and y'

 $\Rightarrow \frac{\partial \phi}{\partial x'} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial x'} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial x'}$ 

 $\phi = \text{scalar field} = \phi(x, y) \equiv \phi(x', y')$ write  $\phi_{,x} := \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_x$  $\phi$  depends either on x and y, or on x' and y' $\Rightarrow \phi_{,x'} = \phi_{,x} x_{,x'} + \phi_{,y} y_{,x'}$ 

 $\phi = \text{scalar field} = \phi(x, y) \equiv \phi(x', y')$ write  $\phi_{,x} := \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_x$  $\phi$  depends either on x and y, or on x' and y' $\Rightarrow \phi_{,x'} = \phi_{,x} x_{,x'} + \phi_{,y} y_{,x'}$ 

 $(\phi_{,x'},\phi_{,y'}) =$ 

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\,\mathrm{SR+}\epsilon\mathrm{GR}$ 

$$\begin{split} \phi &= \text{scalar field} = \phi(x, y) \equiv \phi(x', y') \\ \text{write } \phi_{,x} &:= \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_x \\ \phi \text{ depends either on } x \text{ and } y, \text{ or on } x' \text{ and } y' \\ \Rightarrow \phi_{,x'} &= \phi_{,x} x_{,x'} + \phi_{,y} y_{,x'} \\ (\phi_{,x'}, \phi_{,y'}) &= (\phi_{,x} x_{,x'} + \phi_{,y} y_{,x'}, \phi_{,x} x_{,y'} + \phi_{,y} y_{,y'}) \end{split}$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

y'

$$\phi = \text{scalar field} = \phi(x, y) \equiv \phi(x', y')$$
  
write  $\phi_{,x} := \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_x$   
 $\phi$  depends either on  $x$  and  $y$ , or on  $x'$  and  
 $\Rightarrow \phi_{,x'} = \phi_{,x} x_{,x'} + \phi_{,y} y_{,x'}$   
 $(\phi_{,x'}, \phi_{,y'}) = (\phi_{,x}, \phi_{,y}) \begin{pmatrix} x_{,x'} & x_{,y'} \\ y_{,x'} & y_{,y'} \end{pmatrix}$ 

 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\,\cdot\,\boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{>}\quad\mathbf{SR+}\epsilon\mathbf{GR}$ 

$$\phi = \text{scalar field} = \phi(x, y) \equiv \phi(x', y')$$
  
write  $\phi_{,x} := \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_x$   
 $\phi$  depends either on  $x$  and  $y$ , or on  $x'$  and  $y'$   
 $\Rightarrow \phi_{,x'} = \phi_{,x} x_{,x'} + \phi_{,y} y_{,x'}$   
 $(\phi_{,x'}, \phi_{,y'}) = (\phi_{,x}, \phi_{,y}) \begin{pmatrix} x_{,x'} & x_{,y'} \\ y_{,x'} & y_{,y'} \end{pmatrix}$   
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$  (example: rotation)  
 $x_{,x'} = \frac{\partial x}{\partial x'} = \cos \theta$   
 $x_{,y'} = \frac{\partial x}{\partial y'} = -\sin \theta \dots$ 

 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\,\boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{>}\quad\mathbf{SR+}\epsilon\mathbf{GR}$ 

$$\phi = \text{scalar field} = \phi(x, y) \equiv \phi(x', y')$$
  
write  $\phi_{,x} := \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_x$   
 $\phi$  depends either on  $x$  and  $y$ , or on  $x'$  and  $y'$   
 $\Rightarrow \phi_{,x'} = \phi_{,x} x_{,x'} + \phi_{,y} y_{,x'}$   
 $(\phi_{,x'}, \phi_{,y'}) = (\phi_{,x}, \phi_{,y}) \begin{pmatrix} x_{,x'} & x_{,y'} \\ y_{,x'} & y_{,y'} \end{pmatrix}$   
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_{,x'} & x_{,y'} \\ y_{,x'} & y_{,y'} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$  (general)

 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\,\cdot\,\boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{>}\quad\mathbf{SR+}\epsilon\mathbf{GR}$ 

$$\phi = \text{scalar field} = \phi(x, y) \equiv \phi(x', y')$$
  
write  $\phi_{,x} := \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_x$   
 $\phi$  depends either on  $x$  and  $y$ , or on  $x'$  and  $y'$   
 $\Rightarrow \phi_{,x'} = \phi_{,x} x_{,x'} + \phi_{,y} y_{,x'}$   
 $(\phi_{,x'}, \phi_{,y'}) = (\phi_{,x}, \phi_{,y}) \begin{pmatrix} x_{,x'} & x_{,y'} \\ y_{,x'} & y_{,y'} \end{pmatrix}$   
 $\begin{pmatrix} x \\ y \end{pmatrix} = \Lambda^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$  (general)

 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\boldsymbol{\phi}\cdot\boldsymbol{\langle}\boldsymbol{\rangle}\cdot\mathbf{g}\cdot\boldsymbol{x}^{\boldsymbol{\mu}}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\,\cdot\ \boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{\boldsymbol{\rangle}}\quad \mathbf{SR+}\epsilon\mathbf{GR}$ 

y'

$$\begin{split} \phi &= \text{scalar field} = \phi(x, y) \equiv \phi(x', y') \\ \text{write } \phi_{,x} &:= \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_{x} \\ \phi \text{ depends either on } x \text{ and } y, \text{ or on } x' \text{ and} \\ \Rightarrow \phi_{,x'} &= \phi_{,x} x_{,x'} + \phi_{,y} y_{,x'} \\ (\phi_{,x'}, \phi_{,y'}) &= (\phi_{,x}, \phi_{,y}) \begin{pmatrix} x_{,x'} & x_{,y'} \\ y_{,x'} & y_{,y'} \end{pmatrix} \\ \begin{pmatrix} x \\ y \end{pmatrix} &= \Lambda^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix} \text{ (general)} \\ \Rightarrow (\phi_{,x'}, \phi_{,y'}) &= (\phi_{,x}, \phi_{,y}) \Lambda^{-1} \end{split}$$

 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\boldsymbol{\phi}\cdot\boldsymbol{\langle}\boldsymbol{\rangle}\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\,\cdot\ \boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{\boldsymbol{\rangle}}\quad \mathbf{SR+}\epsilon\mathbf{GR}$ 

$$\begin{split} \phi &= \text{scalar field} = \phi(x, y) \equiv \phi(x', y') \\ \text{write } \phi_{,x} &:= \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_{x} \\ \phi \text{ depends either on } x \text{ and } y, \text{ or on } x' \text{ and } y \\ \Rightarrow \phi_{,x'} &= \phi_{,x} x_{,x'} + \phi_{,y} y_{,x'} \\ (\phi_{,x'}, \phi_{,y'}) &= (\phi_{,x}, \phi_{,y}) \begin{pmatrix} x_{,x'} & x_{,y'} \\ y_{,x'} & y_{,y'} \end{pmatrix} \\ \begin{pmatrix} x \\ y \end{pmatrix} &= \Lambda^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix} \quad \text{(general)} \\ \tilde{d}\phi &= \left( (\tilde{d}\phi)_{x'}, (\tilde{d}\phi)_{y'} \right) = \left( (\tilde{d}\phi)_{x}, (\tilde{d}\phi)_{y} \right) \Lambda^{-1} \end{split}$$

 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\boldsymbol{\phi}\cdot\boldsymbol{\langle}\boldsymbol{\rangle}\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\,\cdot\ \boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{\boldsymbol{\rangle}}\quad \mathbf{SR+}\epsilon\mathbf{GR}$ 

$$\phi = \text{scalar field} = \phi(x, y) \equiv \phi(x', y')$$
  
write  $\phi_{,x} := \frac{\partial \phi}{\partial x} =: (\tilde{d}\phi)_{x}$   
 $\phi$  depends either on  $x$  and  $y$ , or on  $x'$  and  $y'$   
 $\Rightarrow \phi_{,x'} = \phi_{,x} x_{,x'} + \phi_{,y} y_{,x'}$   
 $(\phi_{,x'}, \phi_{,y'}) = (\phi_{,x}, \phi_{,y}) \begin{pmatrix} x_{,x'} & x_{,y'} \\ y_{,x'} & y_{,y'} \end{pmatrix}$   
 $\begin{pmatrix} x \\ y \end{pmatrix} = \Lambda^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$  (general)  
 $\tilde{d}\phi = ((\tilde{d}\phi)_{x'}, (\tilde{d}\phi)_{y'}) = ((\tilde{d}\phi)_{x}, (\tilde{d}\phi)_{y}) \Lambda^{-1}$   
 $(\tilde{d}\phi)_{\mu'} = (\tilde{d}\phi)_{\nu} \Lambda^{\nu}_{\mu'}$ 

 $\mathbf{1}\cdot\Lambda\ \boldsymbol{\Sigma}\cdot\tilde{\mathbf{d}}\boldsymbol{\phi}\cdot\boldsymbol{\langle}\boldsymbol{\rangle}\cdot\mathbf{g}\cdot\boldsymbol{x}^{\mu}\cdot\mathbf{d}\boldsymbol{s}^{2}\cdot\boldsymbol{\nabla}\vec{A}\,;\,\boldsymbol{M}\cdot\boldsymbol{\nabla}_{V}=\boldsymbol{0}\cdot\mathbf{R}\cdot\boldsymbol{\boldsymbol{\rangle}}\quad \mathbf{SR+}\epsilon\mathbf{GR}$ 

basis vectors of different bases:  $\vec{e}_{\mu'} = \Lambda^{\nu}_{\ \mu'} \vec{e}_{\nu}$ same vector:  $(\vec{p})^{\mu'} = \Lambda^{\mu'}_{\ \nu} (\vec{p})^{\nu}$ 

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\mathrm{SR+}\epsilon\mathrm{GR}$ 

basis vectors of different bases:  $\vec{e}_{\mu'} = \Lambda^{\nu}_{\ \mu'} \vec{e}_{\nu}$ 

same vector:  $p^{\mu'} = \Lambda^{\mu'}_{\ \nu} p^{\nu}$ 

same gradient (example 1-form):  $(\tilde{d}\phi)_{\mu'} = (\tilde{d}\phi)_{\nu}\Lambda^{\nu}_{\ \mu'}$ 

basis vectors of different bases:  $\vec{e}_{\mu'} = \Lambda^{\nu}_{\ \mu'} \vec{e}_{\nu}$ 

same vector:  $p^{\mu'} = \Lambda^{\mu'}_{\ \nu} p^{\nu}$ 

same gradient (example 1-form):  $(\tilde{d}\phi)_{\mu'} = (\tilde{d}\phi)_{\nu}\Lambda^{\nu}_{\mu'}$ 

- vector  $\vec{p}$  is invariant: no dependence on coords
- $\vec{p}$  is contravariant: components  $p^{\nu}$  change inversely to how  $\vec{e}_{\mu}$  change; inverses: matrix  $\{\Lambda^{\nu}_{\mu'}\}$  vs  $\{\Lambda^{\beta'}_{\alpha}\}$

basis vectors of different bases:  $\vec{e}_{\mu'} = \Lambda^{\nu}_{\ \mu'} \vec{e}_{\nu}$ 

same vector:  $p^{\mu'} = \Lambda^{\mu'}_{\ \nu} p^{\nu}$ 

same gradient (example 1-form):  $(\tilde{d}\phi)_{\mu'} = (\tilde{d}\phi)_{\nu}\Lambda^{\nu}_{\mu'}$ 

- vector  $\vec{p}$  is invariant: no dependence on coords
- $\vec{p}$  is contravariant: components  $p^{\nu}$  change inversely to how  $\vec{e}_{\mu}$  change; inverses: matrix  $\{\Lambda^{\nu}_{\mu'}\}$  vs  $\{\Lambda^{\beta'}_{\alpha}\}$
- 1-form d̃φ is invariant: no dependence on coords
  d̃φ is covariant: components (d̃φ)<sub>μ</sub> change like ẽ<sub>μ</sub> (but left-multiply)

basis vectors of different bases:  $\vec{e}_{\mu'} = \Lambda^{\nu}_{\ \mu'} \vec{e}_{\nu}$ 

same vector: 
$$p^{\mu'} = \Lambda^{\mu'}_{\ \nu} p^{\nu}$$

same gradient (example 1-form):  $(\tilde{d}\phi)_{\mu'} = (\tilde{d}\phi)_{\nu}\Lambda^{\nu}_{\mu'}$ 

- vector  $\vec{p}$  is invariant: no dependence on coords
- $\vec{p}$  is contravariant: components  $p^{\nu}$  change inversely to how  $\vec{e}_{\mu}$  change; inverses: matrix  $\{\Lambda^{\nu}_{\mu'}\}$  vs  $\{\Lambda^{\beta'}_{\alpha}\}$
- 1-form  $\tilde{d}\phi$  is invariant: no dependence on coords
- $\tilde{d}\phi$  is covariant: components  $(\tilde{d}\phi)_{\mu}$  change like  $\vec{e}_{\mu}$  (but left-multiply)

w:Covariance and contravariance of vectors

#### GR tensors: two different scalar products

GR tensors: two different scalar products vector–1-form duality requirement:

GR tensors: two different scalar products vector–1-form duality requirement:

$$\langle \vec{p}, \tilde{q} \rangle = \sum_{\mu} p^{\mu} q_{\mu}$$

GR tensors: two different scalar products vector–1-form duality requirement:

 $\langle \vec{p}, \tilde{q} \rangle = p^{\mu} q_{\mu}$ 

GR tensors: two different scalar products vector–1-form duality requirement:

$$\langle \vec{p}, \tilde{q} \rangle = p^{\mu} q_{\mu} = \vec{p}(\tilde{q})$$

$$1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{+} \epsilon \mathrm{GR}$$

GR tensors: two different scalar products vector–1-form duality requirement:

 $\langle \vec{p}, \tilde{q} \rangle = p^{\mu} q_{\mu} = \vec{p}(\tilde{q}) = \tilde{q}(\vec{p})$ 

GR tensors: two different scalar products vector–1-form duality requirement:

$$\langle \vec{p}, \tilde{q} \rangle = p^{\mu} q_{\mu} = \vec{p}(\tilde{q}) = \tilde{q}(\vec{p})$$

 $\langle \ , \ \rangle$  is a (1,1) tensor

GR tensors: two different scalar products vector–1-form duality requirement:

$$\langle \vec{p}, \tilde{q} \rangle = p^{\mu} q_{\mu} = \vec{p}(\tilde{q}) = \tilde{q}(\vec{p})$$

 $\langle \ , \ \rangle$  is a (1,1) tensor

can be called I with components  $\delta^{\mu}_{\nu}$  in a coordinate basis

GR tensors: two different scalar products vector–1-form duality requirement:

$$\langle \vec{p}, \tilde{q} \rangle = p^{\mu} q_{\mu} = \vec{p}(\tilde{q}) = \tilde{q}(\vec{p})$$

 $\langle \ , \ \rangle$  is a (1,1) tensor

think: vector  $\rightarrow$  column vector 1-form  $\rightarrow$  row vector

GR tensors: two different scalar products vector–1-form duality requirement:

$$\langle \vec{p}, \tilde{q} \rangle = p^{\mu} q_{\mu} = \vec{p}(\tilde{q}) = \tilde{q}(\vec{p})$$

$$\langle , \rangle \text{ is a (1,1) tensor}$$

$$(q_0, q_1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^0 \\ p^1 \end{pmatrix} =$$

GR tensors: two different scalar products vector–1-form duality requirement:

$$\langle \vec{p}, \tilde{q} \rangle = p^{\mu} q_{\mu} = \vec{p}(\tilde{q}) = \tilde{q}(\vec{p})$$

$$\langle , \rangle \text{ is a (1,1) tensor}$$

$$(q_0, q_1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^0 \\ p^1 \end{pmatrix} = (q_0, q_1) \begin{pmatrix} p^0 \\ p^1 \end{pmatrix}$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

GR tensors: two different scalar products vector–1-form duality requirement:

$$\langle \vec{p}, \tilde{q} \rangle = p^{\mu} q_{\mu} = \vec{p}(\tilde{q}) = \tilde{q}(\vec{p})$$

$$\langle , \rangle \text{ is a (1,1) tensor}$$

$$(q_0, q_1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^0 \\ p^1 \end{pmatrix} = (q_0, q_1) \begin{pmatrix} p^0 \\ p^1 \end{pmatrix} = p^{\mu} q_{\mu}$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{+} \epsilon \mathrm{GR}$ 

GR tensors: two different scalar products vector–1-form duality requirement:

$$\langle \vec{p}, \tilde{q} \rangle = p^{\mu} q_{\mu} = \vec{p}(\tilde{q}) = \tilde{q}(\vec{p})$$

$$\langle , \rangle \text{ is a (1,1) tensor}$$

$$(q_0, q_1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^0 \\ p^1 \end{pmatrix} = (q_0, q_1) \begin{pmatrix} p^0 \\ p^1 \end{pmatrix} = p^{\mu} q_{\mu}$$

 $\langle , \rangle = (1,1)$ -tensor = "row-column" matrix I with  $I^{\mu}_{\nu} = \delta^{\mu}_{\nu}$ 

 $1 \cdot \Lambda \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad SR+\epsilon GR$ 

#### GR tensors: two different scalar products

GR tensors: two different scalar products

ordinary linear algebra: column vectors, row vectors, matrices

#### GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays

GR tensors: two different scalar products

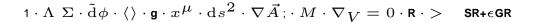
(m, n)-tensor algebra: m column n row m + n-arrays

e.g.: (0,2)-tensor: metric  $g_{\mu\nu}$ 

GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays

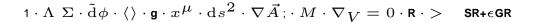
using  $\langle , \rangle$ , (1,0)-tensor = vector = function of 1-forms



GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays

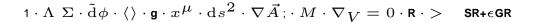
using  $\langle , \rangle$ , (0,1)-tensor = 1-form = function of vectors



#### GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays

(m, n)-tensor = function of m 1-forms and n vectors



GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays

(m, n)-tensor = function of m 1-forms and n vectors

V = space of vectors  $\vec{p} = p^{\mu} \vec{e}_{\mu}$ 

GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays

(m, n)-tensor = function of m 1-forms and n vectors

$$V =$$
 space of vectors  $\vec{p} = p^{\mu} \vec{e}_{\mu}$ 

$$V^* = \text{dual space of 1-forms } \tilde{q} = q_\mu \tilde{e}^\mu$$

GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays

(m, n)-tensor = function of m 1-forms and n vectors

$$V =$$
 space of vectors  $\vec{p} = p^{\mu} \vec{e}_{\mu}$ 

 $V^* = \text{dual space of 1-forms } \tilde{q} = q_\mu \tilde{e}^\mu$ 

 $V^* \otimes V^*$  = space of (0, 2)-tensors  $\mathbf{T} = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$  (e.g. metric) w:tensor product

GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays

(m, n)-tensor = function of m 1-forms and n vectors

$$V =$$
 space of vectors  $\vec{p} = p^{\mu} \vec{e}_{\mu}$ 

 $V^* = \text{dual space of 1-forms } \tilde{q} = q_\mu \tilde{e}^\mu$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $\mathbf{T} = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$  (e.g. metric) w:tensor product

loosely speaking, the second  $\otimes$  means "function of two vectors" (or 1-forms, or a vector and a 1-form) in *that particular left-to-right order* 

GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays (m, n)-tensor = function of m 1-forms and n vectors

V = space of vectors  $\vec{p} = p^{\mu} \vec{e}_{\mu}$ 

 $V^* = \text{dual space of 1-forms } \tilde{q} = q_\mu \tilde{e}^\mu$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $\mathbf{T} = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$  (e.g. metric) w:tensor product

order of  $V^* \otimes V^* = 2$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \cdot M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays

(m, n)-tensor = function of m 1-forms and n vectors

$$V =$$
 space of vectors  $\vec{p} = p^{\mu} \vec{e}_{\mu}$ 

 $V^* = \text{dual space of 1-forms } \tilde{q} = q_\mu \tilde{e}^\mu$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $\mathbf{T} = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$  (e.g. metric) w:tensor product

order of  $V^* \otimes V^* = 2$ 

warning: the "rank" of tensors has two different meanings: w:Tensor\_(intrinsic\_definition)#Tensor\_rank

GR tensors: two different scalar products

(m, n)-tensor algebra: m column n row m + n-arrays (m, n)-tensor = function of m 1-forms and n vectors

$$V =$$
 space of vectors  $\vec{p} = p^{\mu} \vec{e}_{\mu}$ 

 $V^* = \text{dual space of 1-forms } \tilde{q} = q_\mu \tilde{e}^\mu$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $\mathbf{T} = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$  (e.g. metric) w:tensor product

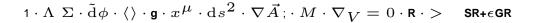
order of  $V^* \otimes V^* = 2$ 

dimension of  $V^* \otimes V^* = 16$  (for V = spacetime)

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $\mathbf{T} = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $T = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

e.g.: metric g = function of two vectors



 $V^* \otimes V^* =$  space of (0, 2)-tensors  $T = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $T = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coo

rds is 
$$\left( \begin{array}{cc} 1 & 0 \\ 0 & r^2 \end{array} 
ight)$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR+}\epsilon \mathsf{GR}$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $T = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $T = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 

 $\mathbf{g}(\vec{A}, \vec{B})$ 

 $V^* \otimes V^*$  = space of (0, 2)-tensors  $T = T_{\mu\nu}\tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes$  = w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ also written:  $\vec{A} \cdot \vec{B}$  "dot product"

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \cdot M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR}_{\epsilon} \mathsf{GR}$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $T = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 

 $\mathbf{g}(\vec{A}, \vec{B})$ 

 $V^* \otimes V^*$  = space of (0, 2)-tensors  $T = T_{\mu\nu}\tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes$  = w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  $\mathbf{g}(\vec{A},\vec{B}) = \left[ \left( \begin{array}{cc} 1 & 0 \\ 0 & r^2 \end{array} \right) \left( \begin{array}{c} A^r \\ A^\theta \end{array} \right) \right]^{\mathrm{T}} \left( \begin{array}{c} B^r \\ B^\theta \end{array} \right)$ 

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad \mathrm{SR+}\epsilon\mathrm{GR}$ 

 $V^* \otimes V^*$  = space of (0, 2)-tensors  $T = T_{\mu\nu}\tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes$  = w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  $\mathbf{g}(\vec{A}, \vec{B}) = (A^r, A^{\theta}r^2) \begin{pmatrix} B^r \\ B^{\theta} \end{pmatrix}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR+}\epsilon \mathsf{GR}$ 

 $V^* \otimes V^*$  = space of (0, 2)-tensors  $T = T_{\mu\nu}\tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes$  = w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ 

and g in 
$$x, y$$
 coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 

$$\mathbf{g}(\vec{A},\vec{B}) = A^r B^r + A^\theta B^\theta r^2$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR+}\epsilon \mathsf{GR}$ 

 $V^* \otimes V^*$  = space of (0, 2)-tensors  $T = T_{\mu\nu}\tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes$  = w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ 

and **g** in 
$$x, y$$
 coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 

$$\mathbf{g}(\vec{A}, \vec{B}) = A^r B^r + A^{\theta} B^{\theta} r^2$$
$$= \left[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A^x \\ A^y \end{pmatrix} \right]^{\mathrm{T}} \begin{pmatrix} B^x \\ B^y \end{pmatrix}$$

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\mathrm{SR+}\epsilon\mathrm{GR}$ 

 $V^* \otimes V^*$  = space of (0, 2)-tensors  $T = T_{\mu\nu}\tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes$  = w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  $\mathbf{g}(\vec{A}, \vec{B}) = A^r B^r + A^{\theta} B^{\theta} r^2 = (A^x, A^y) \begin{pmatrix} B^x \\ B^y \end{pmatrix}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR+}\epsilon \mathsf{GR}$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $T = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  $g(\vec{A}, \vec{B}) = A^r B^r + A^{\theta} B^{\theta} r^2 = A^x B^x + A^y B^y$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \cdot M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $T = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  $g(\vec{A}, \vec{B}) = A^r B^r + A^{\theta} B^{\theta} r^2 = A^x B^x + A^y B^y$ in general, for a 2-form T,  $T(\vec{A}, \vec{B}) \neq T(\vec{B}, \vec{A})$ 

 $V^* \otimes V^*$  = space of (0, 2)-tensors  $T = T_{\mu\nu}\tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes$  = w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  $\mathbf{g}(\vec{A}, \vec{B}) = A^r B^r + A^{\theta} B^{\theta} r^2 = A^x B^x + A^y B^y$  $\mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR+}\epsilon \mathsf{GR}$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $T = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  $\mathbf{g}(\vec{A}, \vec{B}) = A^r B^r + A^\theta B^\theta r^2 = A^x B^x + A^y B^y$  $\mathbf{g} = \sum_{\mu \in \{r,\theta\}, \nu \in \{r,\theta\}} g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ 

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\mathrm{SR+}\epsilon\mathrm{GR}$ 

 $V^* \otimes V^* =$  space of (0, 2)-tensors  $T = T_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ , where  $\otimes =$  w:tensor product

e.g.: metric g = function of two vectors

= "row-row" matrix

e.g. Euclidean g on  $\mathbb{R}^2$ . g in  $r, \theta$  coords is  $\begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$ and g in x, y coords is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  $\mathbf{g}(\vec{A}, \vec{B}) = A^r B^r + A^\theta B^\theta r^2 = A^x B^x + A^y B^y$  $\mathbf{g} = \sum_{\mu \in \{x,y\}, \nu \in \{x,y\}} g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR+}\epsilon \mathsf{GR}$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

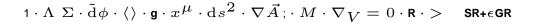
g can be applied to basis vectors  $\vec{e_{\mu}}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ 



g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ 

**e.g.**  $\mathbf{g} = g_{rr}\tilde{e}^r \otimes \tilde{e}^r + g_{r\theta}\tilde{e}^r \otimes \tilde{e}^\theta + g_{\theta r}\tilde{e}^\theta \otimes \tilde{e}^r + g_{\theta\theta}\tilde{e}^\theta \otimes \tilde{e}^\theta$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ 

e.g.  $\mathbf{g} = g_{rr}\tilde{e}^r \otimes \tilde{e}^r + g_{\theta\theta}\tilde{e}^\theta \otimes \tilde{e}^\theta$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ e.g.  $\mathbf{g} = g_{rr} \tilde{e}^{r} \otimes \tilde{e}^{r} + g_{\theta\theta} \tilde{e}^{\theta} \otimes \tilde{e}^{\theta}$ check:  $\mathbf{g}(\vec{e_r}, \vec{e_r}) = g_{rr}$ ?

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$   $\mathbf{e.g.} \ \mathbf{g} = g_{rr} \tilde{e}^{r} \otimes \tilde{e}^{r} + g_{\theta\theta} \tilde{e}^{\theta} \otimes \tilde{e}^{\theta}$  $\mathbf{g}(\vec{e_r}, \vec{e_r}) = (g_{rr} \tilde{e}^{r} \otimes \tilde{e}^{r} + g_{\theta\theta} \tilde{e}^{\theta} \otimes \tilde{e}^{\theta})(\vec{e_r}, \vec{e_r})$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$   $\mathbf{e.g.} \ \mathbf{g} = g_{rr} \tilde{e}^{r} \otimes \tilde{e}^{r} + g_{\theta\theta} \tilde{e}^{\theta} \otimes \tilde{e}^{\theta}$  $\mathbf{g}(\vec{e_r}, \vec{e_r}) = g_{rr} \tilde{e}^{r} \otimes \tilde{e}^{r} (\vec{e_r}, \vec{e_r}) + g_{\theta\theta} \tilde{e}^{\theta} \otimes \tilde{e}^{\theta} (\vec{e_r}, \vec{e_r})$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$   $\mathbf{e.g.} \ \mathbf{g} = g_{rr} \tilde{e}^{r} \otimes \tilde{e}^{r} + g_{\theta\theta} \tilde{e}^{\theta} \otimes \tilde{e}^{\theta}$  $\mathbf{g}(\vec{e_r}, \vec{e_r}) = g_{rr} \tilde{e}^{r}(\vec{e_r}) \tilde{e}^{r}(\vec{e_r}) + g_{\theta\theta} \tilde{e}^{\theta}(\vec{e_r}) \tilde{e}^{\theta}(\vec{e_r})$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \cdot M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad SR+\epsilon GR$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$   $\mathbf{e.g.} \ \mathbf{g} = g_{rr} \tilde{e}^{r} \otimes \tilde{e}^{r} + g_{\theta\theta} \tilde{e}^{\theta} \otimes \tilde{e}^{\theta}$  $\mathbf{g}(\vec{e_{r}}, \vec{e_{r}}) = g_{rr} \langle \tilde{e}^{r}, \vec{e_{r}} \rangle \langle \tilde{e}^{r}, \vec{e_{r}} \rangle + g_{\theta\theta} \langle \tilde{e}^{\theta}, \vec{e_{r}} \rangle \langle \tilde{e}^{\theta}, \vec{e_{r}} \rangle$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ 

e.g.  $\mathbf{g} = g_{rr}\tilde{e}^r \otimes \tilde{e}^r + g_{\theta\theta}\tilde{e}^\theta \otimes \tilde{e}^\theta$ 

 $\mathbf{g}(\vec{e}_r, \vec{e}_r) = g_{rr} \times 1 \times 1 + g_{\theta\theta} \times 0 \times 0$  by duality through scalar product  $\langle , \rangle$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu} \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ 

e.g.  $\mathbf{g} = g_{rr}\tilde{e}^r \otimes \tilde{e}^r + g_{\theta\theta}\tilde{e}^\theta \otimes \tilde{e}^\theta$ 

 $\mathbf{g}(\vec{e_r}, \vec{e_r}) = g_{rr}$  self-consistent definition

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu}\tilde{e}^{\mu}\otimes\tilde{e}^{\nu}$ e.g.  $\mathbf{g} = g_{rr}\tilde{e}^{r}\otimes\tilde{e}^{r} + g_{\theta\theta}\tilde{e}^{\theta}\otimes\tilde{e}^{\theta}$ inverse:  $\mathbf{g}^{-1} = g^{\mu\nu}\vec{e}_{\mu}\otimes\vec{e}_{\nu}$ ,

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu}\tilde{e}^{\mu}\otimes\tilde{e}^{\nu}$ e.g.  $\mathbf{g} = g_{rr}\tilde{e}^{r}\otimes\tilde{e}^{r} + g_{\theta\theta}\tilde{e}^{\theta}\otimes\tilde{e}^{\theta}$ inverse:  $\mathbf{g}^{-1} = g^{\mu\nu}\vec{e}_{\mu}\otimes\vec{e}_{\nu}$ , where  $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu}$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

$$\Rightarrow \mathbf{g} = g_{\mu\nu}\tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$$
  
e.g.  $\mathbf{g} = g_{rr}\tilde{e}^{r} \otimes \tilde{e}^{r} + g_{\theta\theta}\tilde{e}^{\theta} \otimes \tilde{e}^{\theta}$   
inverse:  $\mathbf{g}^{-1} = g^{\mu\nu}\vec{e}_{\mu} \otimes \vec{e}_{\nu}$ ,  
where  $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu}$   
duality of associate vectors and 1-forms:

$$\mathbf{g}(\vec{A},\vec{B}) = \mathbf{g}^{-1}(\tilde{A},\tilde{B})$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

$$\Rightarrow \mathbf{g} = g_{\mu\nu}\tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$$
  
e.g.  $\mathbf{g} = g_{rr}\tilde{e}^{r} \otimes \tilde{e}^{r} + g_{\theta\theta}\tilde{e}^{\theta} \otimes \tilde{e}^{\theta}$   
inverse:  $\mathbf{g}^{-1} = g^{\mu\nu}\vec{e}_{\mu} \otimes \vec{e}_{\nu}$ ,  
where  $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu}$   
duality of associate vectors and 1-forms:

$$\mathbf{g}(\vec{A},\vec{B}) = \mathbf{g}^{-1}(\tilde{A},\tilde{B}) = \vec{A}\cdot\vec{B}$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

$$\Rightarrow \mathbf{g} = g_{\mu\nu}\tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$$
  
e.g.  $\mathbf{g} = g_{rr}\tilde{e}^{r} \otimes \tilde{e}^{r} + g_{\theta\theta}\tilde{e}^{\theta} \otimes \tilde{e}^{\theta}$   
inverse:  $\mathbf{g}^{-1} = g^{\mu\nu}\vec{e}_{\mu} \otimes \vec{e}_{\nu}$ ,  
where  $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu}$   
duality of associate vectors and 1-forms:

$$\mathbf{g}(\vec{A},\vec{B}) = \mathbf{g}^{-1}(\tilde{A},\tilde{B}) = \vec{A}\cdot\vec{B} = g_{\mu\nu}A^{\mu}B^{\nu}$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{+} \epsilon \mathrm{GR}$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

 $\Rightarrow \mathbf{g} = g_{\mu\nu}\tilde{e}^{\mu}\otimes\tilde{e}^{\nu}$ e.g.  $\mathbf{g} = g_{rr}\tilde{e}^{r}\otimes\tilde{e}^{r} + g_{\theta\theta}\tilde{e}^{\theta}\otimes\tilde{e}^{\theta}$ inverse:  $\mathbf{g}^{-1} = g^{\mu\nu}\vec{e}_{\mu}\otimes\vec{e}_{\nu}$ , where  $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu}$ 

duality of associate vectors and 1-forms:

$$\mathbf{g}(\vec{A},\vec{B}) = \mathbf{g}^{-1}(\tilde{A},\tilde{B}) = \vec{A} \cdot \vec{B} = g_{\mu\nu}A^{\mu}B^{\nu} = g^{\mu\nu}A_{\mu}B_{\nu}$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}}\phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d}s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad SR+\epsilon GR$ 

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

$$\Rightarrow \mathbf{g} = g_{\mu\nu}\tilde{e}^{\mu}\otimes\tilde{e}^{\nu}$$
  
e.g.  $\mathbf{g} = g_{rr}\tilde{e}^{r}\otimes\tilde{e}^{r} + g_{\theta\theta}\tilde{e}^{\theta}\otimes\tilde{e}^{\theta}$   
inverse:  $\mathbf{g}^{-1} = g^{\mu\nu}\vec{e}_{\mu}\otimes\vec{e}_{\nu}$ ,  
where  $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu}$ 

duality of associate vectors and 1-forms:

$$\mathbf{g}(\vec{A},\vec{B}) = \mathbf{g}^{-1}(\tilde{A},\tilde{B}) = \vec{A} \cdot \vec{B} = g_{\mu\nu}A^{\mu}B^{\nu} = g^{\mu\nu}A_{\mu}B_{\nu}$$

lower an index:  $g_{\mu\nu}A^{\mu} = A_{\nu}$ 

$$1\cdot\Lambda\ \Sigma\cdot \widetilde{\mathrm{d}}\phi\cdot\langle
angle\cdot \mathsf{g}\cdot x^\mu\cdot\mathrm{d}s^2\cdot
abla ec{A}$$
;  $\cdot\ M\cdot
abla_V=0\cdot\mathsf{R}\cdot>$  SR+ $\epsilon$ GR

g can be applied to basis vectors  $\vec{e}_{\mu}$ 

we can define components (used earlier):  $g_{\mu\nu} := \mathbf{g}(\vec{e}_{\mu}, \vec{e}_{\nu})$ 

$$\Rightarrow \mathbf{g} = g_{\mu\nu}\tilde{e}^{\mu}\otimes\tilde{e}^{\nu}$$
  
e.g.  $\mathbf{g} = g_{rr}\tilde{e}^{r}\otimes\tilde{e}^{r} + g_{\theta\theta}\tilde{e}^{\theta}\otimes\tilde{e}^{\theta}$   
inverse:  $\mathbf{g}^{-1} = g^{\mu\nu}\vec{e}_{\mu}\otimes\vec{e}_{\nu}$ ,  
where  $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu}$ 

duality of associate vectors and 1-forms:

$$\mathbf{g}(\vec{A},\vec{B}) = \mathbf{g}^{-1}(\tilde{A},\tilde{B}) = \vec{A} \cdot \vec{B} = g_{\mu\nu}A^{\mu}B^{\nu} = g^{\mu\nu}A_{\mu}B_{\nu}$$

lower index:  $g_{\mu\nu}A^{\mu} = A_{\nu}$  | raise index:  $g^{\mu\nu}B_{\nu} = B^{\mu}$ 

$$1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathsf{g}\cdot x^{\mu}\cdot\mathrm{d} s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathsf{R}\,\cdot\,\rangle\quad\mathsf{SR+}\epsilon\mathsf{GR}$$

a coordinate, e.g.  $x^0$  or  $x^1$  is a scalar field on the 4-manifold

a coordinate system  $x^{\mu}$  = set of four scalar fields on the 4-manifold

a coordinate system  $x^{\mu}$  = set of four scalar fields on the 4-manifold

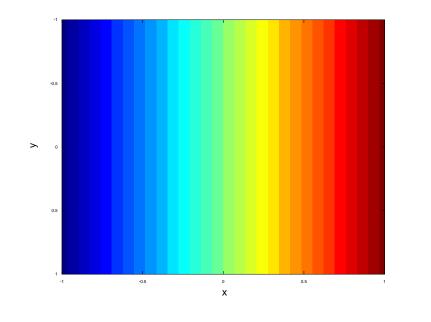
(Bertschinger writes  $x_{\mathbf{x}}^{\mu}$  to show dependence on position  $\mathbf{x}$  in manifold  $\neq$  vector space)

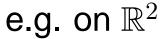
a coordinate system  $x^{\mu}$  = set of four scalar fields on the 4-manifold

 $x^{\mu}$  are differentiable *almost everywhere* 

a coordinate system  $x^{\mu}$  = set of four scalar fields on the 4-manifold

 $x^{\mu}$  are differentiable *almost everywhere* 

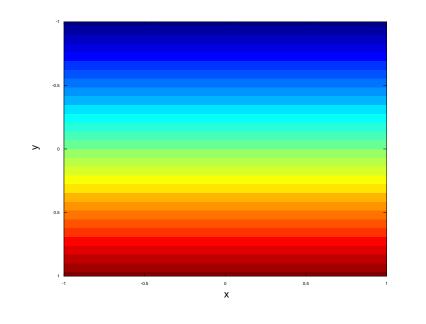




 $1\cdot\Lambda \ \Sigma\cdot \widetilde{\mathrm{d}}\phi\cdot\langle
angle\cdot \mathsf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot
abla ec{A}$ ;  $M\cdot
abla_{V}=0\cdot\mathbf{R}\cdot>$  SR+ $\epsilon$ GR

a coordinate system  $x^{\mu}$  = set of four scalar fields on the 4-manifold

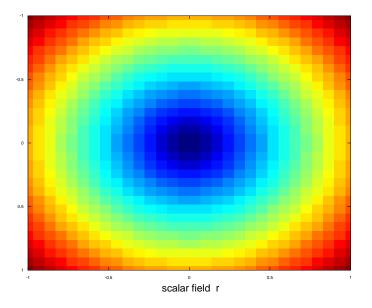
 $x^{\mu}$  are differentiable *almost everywhere* 



e.g. on  $\mathbb{R}^2$ 

a coordinate system  $x^{\mu}$  = set of four scalar fields on the 4-manifold

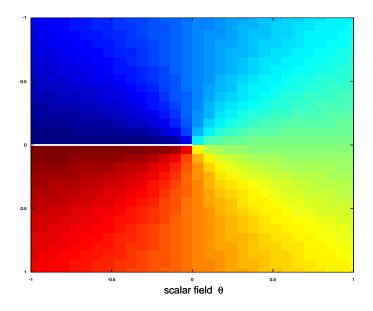
 $x^{\mu}$  are differentiable *almost everywhere* 



e.g. on  $\mathbb{R}^2$ 

a coordinate system  $x^{\mu}$  = set of four scalar fields on the 4-manifold

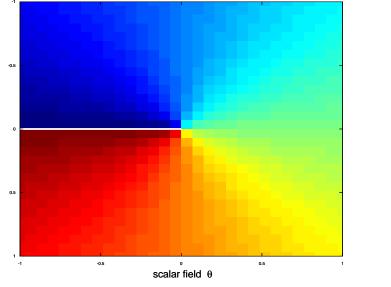
 $x^{\mu}$  are differentiable *almost everywhere* 



e.g. on  $\mathbb{R}^2$ 

a coordinate system  $x^{\mu}$  = set of four scalar fields on the 4-manifold

 $x^{\mu}$  are differentiable *almost everywhere* 



e.g. on  $\mathbb{R}^2$ 

coordinate singularity  $\neq$  singularity in manifold

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

 $\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e}_{\mu}$  and

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

 $\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e}_{\mu}$  and

 $df = \langle \tilde{d}f, d\vec{x} \rangle$  for any scalar field f coordinate-free

where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

 $\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e}_{\mu}$  and

 $df = \langle \tilde{d}f, d\vec{x} \rangle$  for any scalar field f coordinate-free where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis (Bertschinger writes  $\widetilde{\nabla}$  for the gradient  $\tilde{d}$ )

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

 $\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e}_{\mu}$  and

 $df = \langle \tilde{d}f, d\vec{x} \rangle$  for any scalar field f coordinate-free where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis check:  $df = \langle \tilde{d}f, d\vec{x} \rangle$ 

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

$$\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e}_{\mu}$$
 and

 $df = \langle \tilde{d}f, d\vec{x} \rangle \text{ for any scalar field } f \text{ coordinate-free}$ where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis check:  $df = \langle \tilde{d}f, d\vec{x} \rangle$  $= \langle \tilde{e}^{\mu} \partial_{\mu} f, dx^{\nu} \vec{e_{\nu}} \rangle$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR}_{\mathbf{f}} \epsilon \mathsf{GR}$ 

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

$$\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e_{\mu}}$$
 and

 $df = \langle \tilde{d}f, d\vec{x} \rangle \text{ for any scalar field } f \text{ coordinate-free}$ where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis check:  $df = \langle \tilde{d}f, d\vec{x} \rangle$  $= \langle \tilde{e}^{\mu} \partial_{\mu} f, dx^{\nu} \vec{e}_{\nu} \rangle$  $= (\partial_{\mu} f) dx^{\nu} \langle \tilde{e}^{\mu}, \vec{e}_{\nu} \rangle$  since scalars commute

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

$$\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e_{\mu}}$$
 and

 $df = \langle \tilde{d}f, d\vec{x} \rangle \text{ for any scalar field } f \text{ coordinate-free}$ where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis check:  $df = \langle \tilde{d}f, d\vec{x} \rangle$  $= \langle \tilde{e}^{\mu} \partial_{\mu} f, dx^{\nu} \vec{e}_{\nu} \rangle$  $= (\partial_{\mu} f) dx^{\nu} \langle \tilde{e}^{\mu}, \vec{e}_{\nu} \rangle \text{ since scalars commute}$ i.e.  $df = (\partial_{\mu} f) dx^{\mu} \text{ since } \langle \tilde{e}^{\mu}, \vec{e}_{\nu} \rangle = \delta^{\mu}_{\nu}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

$$\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e_{\mu}}$$
 and

 $df = \langle \tilde{d}f, d\vec{x} \rangle \text{ for any scalar field } f \text{ coordinate-free}$ where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis check:  $df = \langle \tilde{d}f, d\vec{x} \rangle$  $= \langle \tilde{e}^{\mu} \partial_{\mu} f, dx^{\nu} \vec{e}_{\nu} \rangle$  $= (\partial_{\mu} f) dx^{\nu} \langle \tilde{e}^{\mu}, \vec{e}_{\nu} \rangle \text{ since scalars commute}$ i.e.  $df = \sum_{\mu} \frac{\partial f}{\partial x^{\mu}} dx^{\mu}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad SR+\epsilon GR$ 

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

$$\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e_{\mu}}$$
 and

 $df = \langle \tilde{d}f, d\vec{x} \rangle \text{ for any scalar field } f \text{ coordinate-free}$ where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis check:  $df = \langle \tilde{d}f, d\vec{x} \rangle$  $= \langle \tilde{e}^{\mu} \partial_{\mu} f, dx^{\nu} \vec{e}_{\nu} \rangle$  $= (\partial_{\mu} f) dx^{\nu} \langle \tilde{e}^{\mu}, \vec{e}_{\nu} \rangle$  since scalars commute i.e.  $df = (\partial_{\mu} f) dx^{\mu}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR}_{\mathbf{f}} \epsilon \mathsf{GR}$ 

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

$$\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e_{\mu}}$$
 and

 $df = \langle \tilde{d}f, d\vec{x} \rangle \text{ for any scalar field } f \text{ coordinate-free}$ where  $\tilde{d} = \tilde{e}^{\mu}\partial_{\mu}$  in a coordinate basis check:  $df = \langle \tilde{d}f, d\vec{x} \rangle$  $= \langle \tilde{e}^{\mu}\partial_{\mu}f, dx^{\nu}\vec{e}_{\nu} \rangle$  $= (\partial_{\mu}f) dx^{\nu} \langle \tilde{e}^{\mu}, \vec{e}_{\nu} \rangle \text{ since scalars commute}$ i.e.  $df = (\partial_{\mu}f) dx^{\mu}$ check:  $\tilde{d}x^{\mu} = \tilde{e}^{\nu}\partial_{\nu}x^{\mu}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

$$\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e_{\mu}}$$
 and

 $df = \langle \tilde{d}f, d\vec{x} \rangle$  for any scalar field f coordinate-free where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis check:  $df = \langle \tilde{d}f, d\vec{x} \rangle$  $= \langle \tilde{e}^{\mu} \partial_{\mu} f, \mathrm{d} x^{\nu} \vec{e}_{\nu} \rangle$  $= (\partial_{\mu} f) dx^{\nu} \langle \tilde{e}^{\mu}, \vec{e}_{\nu} \rangle$  since scalars commute i.e.  $df = (\partial_{\mu} f) dx^{\mu}$ check:  $dx^{\mu} = \tilde{e}^{\nu} \partial_{\nu} x^{\mu}$  $=\sum_{\nu} \tilde{e}^{\nu} \partial_{\nu} x^{\mu}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{+} \epsilon \mathrm{GR}$ 

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

$$\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e_{\mu}}$$
 and

 $df = \langle \tilde{d}f, d\vec{x} \rangle$  for any scalar field f coordinate-free where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis check:  $df = \langle \tilde{d}f, d\vec{x} \rangle$  $= \langle \tilde{e}^{\mu} \partial_{\mu} f, \mathrm{d} x^{\nu} \vec{e}_{\nu} \rangle$  $= (\partial_{\mu} f) dx^{\nu} \langle \tilde{e}^{\mu}, \vec{e}_{\nu} \rangle$  since scalars commute i.e.  $df = (\partial_{\mu} f) dx^{\mu}$ check:  $dx^{\mu} = \tilde{e}^{\nu} \partial_{\nu} x^{\mu}$  $=\sum_{\nu} \tilde{e}^{\nu} \frac{\partial}{\partial x^{\nu}} x^{\mu}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad SR+\epsilon GR$ 

coordinate basis:  $\vec{e}_{\mu}$ ,  $\tilde{e}^{\nu}$  chosen so that:

$$\mathrm{d}\vec{x} = \mathrm{d}x^{\mu}\vec{e_{\mu}}$$
 and

 $df = \langle \tilde{d}f, d\vec{x} \rangle \text{ for any scalar field } f \text{ coordinate-free}$ where  $\tilde{d} = \tilde{e}^{\mu} \partial_{\mu}$  in a coordinate basis check:  $df = \langle \tilde{d}f, d\vec{x} \rangle$  $= \langle \tilde{e}^{\mu} \partial_{\mu} f, dx^{\nu} \vec{e}_{\nu} \rangle$  $= (\partial_{\mu} f) dx^{\nu} \langle \tilde{e}^{\mu}, \vec{e}_{\nu} \rangle$  since scalars commute i.e.  $df = (\partial_{\mu} f) dx^{\mu}$ check:  $\tilde{d}x^{\mu} = \tilde{e}^{\nu} \partial_{\nu} x^{\mu}$  $= \tilde{e}^{\mu}$ 

 $1 \cdot \Lambda \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad SR+\epsilon GR$ 

we now have

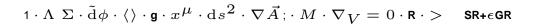
we now have

 $\mathrm{d}s^2 := |\mathrm{d}\vec{x}|^2$ 



#### we now have

 $\mathrm{d}s^2 := |\mathrm{d}\vec{x}|^2 = \mathbf{g}(\mathrm{d}\vec{x}, \mathrm{d}\vec{x})$ 



we now have

 $ds^2 := |d\vec{x}|^2 = \mathbf{g}(d\vec{x}, d\vec{x}) = d\vec{x} \cdot d\vec{x}$  coordinate-free

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\mathrm{SR+}\epsilon\mathrm{GR}$ 

#### we now have

 $ds^2 := |d\vec{x}|^2 = \mathbf{g}(d\vec{x}, d\vec{x}) = d\vec{x} \cdot d\vec{x}$  coordinate-free

 $ds^2 = g_{\mu\nu} dx^{\mu} x^{\nu}$  if  $x^{\mu}$  are a coordinate basis

 $g_{r\theta}$  and  $g_{xy}$ 

 $\mathrm{d}s^2 = \mathrm{d}x^2 + \mathrm{d}y^2 = \mathrm{d}r^2 + r^2\mathrm{d}\theta^2$ 

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad \mathrm{SR+}\epsilon\mathrm{GR}$ 

 $g_{r\theta}$  and  $g_{xy}$ 

- $\mathrm{d}s^2 = \mathrm{d}x^2 + \mathrm{d}y^2 = \mathrm{d}r^2 + r^2\mathrm{d}\theta^2$
- $\vec{e}_x \cdot \vec{e}_x = 1 = \vec{e}_y \cdot \vec{e}_y$ , others zero

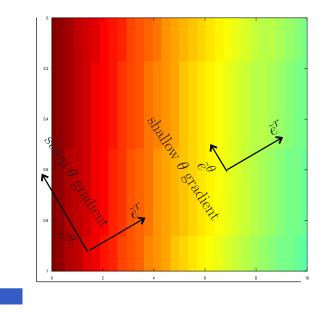
 $g_{r\theta}$  and  $g_{xy}$  $\mathrm{d}s^2 = \mathrm{d}x^2 + \mathrm{d}y^2 = \mathrm{d}r^2 + r^2\mathrm{d}\theta^2$  $\vec{e}_x \cdot \vec{e}_x = 1 = \vec{e}_y \cdot \vec{e}_y$ , others zero  $\vec{e_r} \cdot \vec{e_r} = 1, \ \vec{e_\theta} \cdot \vec{e_\theta} = r^2 \neq 1$ yB, x

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

 $g_{r\theta} \text{ and } g_{xy}$   $ds^{2} = dx^{2} + dy^{2} = dr^{2} + r^{2}d\theta^{2}$   $\vec{e}_{x} \cdot \vec{e}_{x} = 1 = \vec{e}_{y} \cdot \vec{e}_{y}, \text{ others zero}$   $\vec{e}_{r} \cdot \vec{e}_{r} = 1, \vec{e}_{\theta} \cdot \vec{e}_{\theta} = r^{2} \neq 1$  $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu} \Rightarrow g^{xx} = 1 = g^{yy}, g^{xy} = 0 = g^{yx}$ 

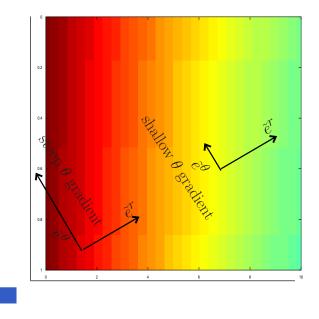
 $g_{r\theta} \text{ and } g_{xy}$   $ds^{2} = dx^{2} + dy^{2} = dr^{2} + r^{2}d\theta^{2}$   $\vec{e}_{x} \cdot \vec{e}_{x} = 1 = \vec{e}_{y} \cdot \vec{e}_{y}, \text{ others zero}$   $\vec{e}_{r} \cdot \vec{e}_{r} = 1, \vec{e}_{\theta} \cdot \vec{e}_{\theta} = r^{2} \neq 1$   $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu} \Rightarrow g^{xx} = 1 = g^{yy}, g^{xy} = 0 = g^{yx}$ but  $g^{rr} = 1 \neq g^{\theta\theta} = r^{-2}, g^{r\theta} = 0 = g^{\theta r}$ 

 $g_{r\theta} \text{ and } g_{xy}$   $ds^{2} = dx^{2} + dy^{2} = dr^{2} + r^{2}d\theta^{2}$   $\vec{e}_{x} \cdot \vec{e}_{x} = 1 = \vec{e}_{y} \cdot \vec{e}_{y}, \text{ others zero}$   $\vec{e}_{r} \cdot \vec{e}_{r} = 1, \vec{e}_{\theta} \cdot \vec{e}_{\theta} = r^{2} \neq 1$   $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu} \Rightarrow g^{xx} = 1 = g^{yy}, g^{xy} = 0 = g^{yx}$ but  $g^{rr} = 1 \neq g^{\theta\theta} = r^{-2}, g^{r\theta} = 0 = g^{\theta r}$ 



 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

 $g_{r\theta} \text{ and } g_{xy}$   $ds^{2} = dx^{2} + dy^{2} = dr^{2} + r^{2}d\theta^{2}$   $\vec{e}_{x} \cdot \vec{e}_{x} = 1 = \vec{e}_{y} \cdot \vec{e}_{y}, \text{ others zero}$   $\vec{e}_{r} \cdot \vec{e}_{r} = 1, \vec{e}_{\theta} \cdot \vec{e}_{\theta} = r^{2} \neq 1$   $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\nu} \Rightarrow g^{xx} = 1 = g^{yy}, g^{xy} = 0 = g^{yx}$ but  $g^{rr} = 1 \neq g^{\theta\theta} = r^{-2}, g^{r\theta} = 0 = g^{\theta r}$ 



SO 
$$ilde{e}^r \cdot ilde{e}^r = 1$$
,  $ilde{e}^ heta \cdot ilde{e}^ heta = r^{-2} 
eq 1$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

gradient of scalar field:  $\tilde{d}\phi \equiv \widetilde{\nabla}\phi$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR+}\epsilon \mathsf{GR}$ 

what is gradient of vector field  $\widetilde{\nabla} \vec{A}$ ?

#### **GR: gradient of a vector:** $\nabla \vec{A}$ $\tilde{\nabla} \vec{A} = \tilde{\nabla} (A^{\nu} \vec{e}_{\nu})$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{+} \epsilon \mathrm{GR}$ 

 $\widetilde{\nabla} \vec{A} = \widetilde{\nabla} (A^{\nu} \vec{e}_{\nu})$  $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$ 

- $\widetilde{\nabla} \vec{A} = \widetilde{\nabla} (A^{\nu} \vec{e}_{\nu})$
- $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$

 $= \tilde{e}^{\mu} \otimes [(\partial_{\mu}A^{\nu})\vec{e}_{\nu} + A^{\nu}\partial_{\mu}\vec{e}_{\nu}]$  by product rule and linearity

- $\widetilde{\nabla} \vec{A} = \widetilde{\nabla} (A^{\nu} \vec{e}_{\nu})$
- $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$
- $= \partial_{\mu}A^{\nu}\tilde{e}^{\mu}\otimes\vec{e}_{\nu} + A^{\nu}\tilde{e}^{\mu}\otimes\partial_{\mu}\vec{e}_{\nu}$

- $\widetilde{\nabla} \vec{A} = \widetilde{\nabla} (A^{\nu} \vec{e}_{\nu})$
- $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$
- $= \partial_{\mu}A^{\nu}\tilde{e}^{\mu}\otimes\vec{e}_{\nu} + A^{\nu}\tilde{e}^{\mu}\otimes\partial_{\mu}\vec{e}_{\nu}$

give a name to the second part: it must be a linear combination of basis vectors  $\vec{e}_{\lambda}$ 

- $\widetilde{\nabla} \vec{A} = \widetilde{\nabla} (A^{\nu} \vec{e}_{\nu})$
- $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$
- $= \partial_{\mu}A^{\nu}\tilde{e}^{\mu}\otimes\vec{e}_{\nu} + A^{\nu}\tilde{e}^{\mu}\otimes\partial_{\mu}\vec{e}_{\nu}$

define  $\Gamma^{\lambda}_{\nu\mu}\vec{e}_{\lambda} := \partial_{\mu}\vec{e}_{\nu}$  Christoffel symbols of second kind (symmetric defn)

- $\widetilde{\nabla} \vec{A} = \widetilde{\nabla} (A^{\nu} \vec{e}_{\nu})$
- $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$
- $= \partial_{\mu}A^{\nu}\tilde{e}^{\mu}\otimes\vec{e}_{\nu} + A^{\nu}\tilde{e}^{\mu}\otimes\partial_{\mu}\vec{e}_{\nu}$
- define  $\Gamma^{\lambda}_{\nu\mu}\vec{e}_{\lambda} := \partial_{\mu}\vec{e}_{\nu}$  Christoffel symbols of second kind (symmetric defn)
- so  $\widetilde{\nabla} \vec{A} = \partial_{\mu} A^{\nu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu} + A^{\nu} \tilde{e}^{\mu} \otimes \Gamma^{\lambda}_{\ \nu\mu} \vec{e}_{\lambda}$

- $\widetilde{\nabla} \vec{A} = \widetilde{\nabla} (A^{\nu} \vec{e}_{\nu})$
- $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$
- $= \partial_{\mu}A^{\nu}\tilde{e}^{\mu}\otimes\vec{e}_{\nu} + A^{\nu}\tilde{e}^{\mu}\otimes\partial_{\mu}\vec{e}_{\nu}$

define  $\Gamma^{\lambda}_{\nu\mu}\vec{e}_{\lambda} := \partial_{\mu}\vec{e}_{\nu}$  Christoffel symbols of second kind (symmetric defn)

SO  $\widetilde{\nabla}\vec{A} = \partial_{\mu}A^{\nu}\tilde{e}^{\mu}\otimes\vec{e}_{\nu} + A^{\nu}\tilde{e}^{\mu}\otimes\Gamma^{\lambda}_{\ \nu\mu}\vec{e}_{\lambda}$ 

 $= \partial_{\mu}A^{\nu}\tilde{e}^{\mu} \otimes \vec{e}_{\nu} + A^{\nu}\Gamma^{\lambda}_{\ \nu\mu}\tilde{e}^{\mu} \otimes \vec{e}_{\lambda} \text{ since any } \Gamma^{\lambda}_{\ \nu\mu} \text{ is a scalar}$ 

- $\widetilde{\nabla}\vec{A} = \widetilde{\nabla}(A^{\nu}\vec{e}_{\nu})$
- $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$
- $= \partial_{\mu}A^{\nu}\tilde{e}^{\mu}\otimes\vec{e}_{\nu} + A^{\nu}\tilde{e}^{\mu}\otimes\partial_{\mu}\vec{e}_{\nu}$

define  $\Gamma^{\lambda}_{\nu\mu}\vec{e}_{\lambda} := \partial_{\mu}\vec{e}_{\nu}$  Christoffel symbols of second kind (symmetric defn)

$$\mathbf{SO} \ \widetilde{\nabla} \vec{A} = \partial_{\mu} A^{\nu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu} + A^{\nu} \tilde{e}^{\mu} \otimes \Gamma^{\lambda}_{\nu\mu} \vec{e}_{\lambda}$$
$$= \partial_{\mu} A^{\nu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu} + A^{\lambda} \Gamma^{\nu}_{\lambda\mu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu}$$

since name of summation index is arbitrary, e.g.  $\sum_{\lambda} x^{-2\lambda} = \sum_{\mu} x^{-2\mu} = \sum_{\nu} x^{-2\nu}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

- $\widetilde{\nabla} \vec{A} = \widetilde{\nabla} (A^{\nu} \vec{e}_{\nu})$
- $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$
- $= \partial_{\mu}A^{\nu}\tilde{e}^{\mu}\otimes\vec{e}_{\nu} + A^{\nu}\tilde{e}^{\mu}\otimes\partial_{\mu}\vec{e}_{\nu}$

define  $\Gamma^{\lambda}_{\nu\mu}\vec{e}_{\lambda} := \partial_{\mu}\vec{e}_{\nu}$  Christoffel symbols of second kind (symmetric defn)

$$\begin{aligned} \mathbf{SO} \ \widetilde{\nabla} \vec{A} &= \partial_{\mu} A^{\nu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu} + A^{\nu} \tilde{e}^{\mu} \otimes \Gamma^{\lambda}_{\nu\mu} \vec{e}_{\lambda} \\ &= \partial_{\mu} A^{\nu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu} + A^{\lambda} \Gamma^{\nu}_{\lambda\mu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu} \\ &= (\partial_{\mu} A^{\nu} + A^{\lambda} \Gamma^{\nu}_{\lambda\mu}) \tilde{e}^{\mu} \otimes \vec{e}_{\nu} \end{aligned}$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

- $\widetilde{\nabla} \vec{A} = \widetilde{\nabla} (A^{\nu} \vec{e}_{\nu})$
- $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$
- $= \partial_{\mu}A^{\nu}\tilde{e}^{\mu}\otimes\vec{e}_{\nu} + A^{\nu}\tilde{e}^{\mu}\otimes\partial_{\mu}\vec{e}_{\nu}$
- define  $\Gamma^{\lambda}_{\nu\mu}\vec{e}_{\lambda} := \partial_{\mu}\vec{e}_{\nu}$  Christoffel symbols of second kind (symmetric defn)
- $\mathbf{SO} \ \widetilde{\nabla} \vec{A} = \partial_{\mu} A^{\nu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu} + A^{\nu} \tilde{e}^{\mu} \otimes \Gamma^{\lambda}_{\nu\mu} \vec{e}_{\lambda}$  $= \partial_{\mu} A^{\nu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu} + A^{\lambda} \Gamma^{\nu}_{\lambda\mu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu}$  $= (\partial_{\mu} A^{\nu} + A^{\lambda} \Gamma^{\nu}_{\lambda\mu}) \tilde{e}^{\mu} \otimes \vec{e}_{\nu}$

$$\nabla_{\mu}A^{\nu} := A^{\nu}_{;\mu} := \partial_{\mu}A^{\nu} + A^{\lambda}\Gamma^{\nu}_{\lambda\mu}$$

w:covariant derivative of vector

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad \mathrm{SR+}\epsilon\mathrm{GR}$ 

- $\widetilde{\nabla} \vec{A} = \widetilde{\nabla} (A^{\nu} \vec{e}_{\nu})$
- $= \tilde{e}^{\mu} \partial_{\mu} (A^{\nu} \vec{e}_{\nu})$
- $= \partial_{\mu}A^{\nu}\tilde{e}^{\mu}\otimes\vec{e}_{\nu} + A^{\nu}\tilde{e}^{\mu}\otimes\partial_{\mu}\vec{e}_{\nu}$
- define  $\Gamma^{\lambda}_{\nu\mu}\vec{e}_{\lambda} := \partial_{\mu}\vec{e}_{\nu}$  Christoffel symbols of second kind (symmetric defn)
- $\mathbf{SO} \ \widetilde{\nabla} \vec{A} = \partial_{\mu} A^{\nu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu} + A^{\nu} \tilde{e}^{\mu} \otimes \Gamma^{\lambda}_{\nu\mu} \vec{e}_{\lambda}$  $= \partial_{\mu} A^{\nu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu} + A^{\lambda} \Gamma^{\nu}_{\lambda\mu} \tilde{e}^{\mu} \otimes \vec{e}_{\nu}$  $= (\partial_{\mu} A^{\nu} + A^{\lambda} \Gamma^{\nu}_{\lambda\mu}) \tilde{e}^{\mu} \otimes \vec{e}_{\nu}$

$$\nabla_{\mu}A^{\nu} := A^{\nu}_{;\mu} := A^{\nu}_{,\mu} + A^{\lambda}\Gamma^{\nu}_{\lambda\mu}$$

w:covariant derivative of vector

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

mathematically deeper:  $\widetilde{\nabla}$ , usually written just as  $\nabla$ , is the <u>w:Levi-Civita connection</u>

mathematically deeper:  $\widetilde{\nabla}$ , usually written just as  $\nabla$ , is the <u>w:Levi-Civita connection</u> warning:  $\Gamma^{\nu}_{\lambda\mu}$  are NOT the components of a tensor

mathematically deeper:  $\widetilde{\nabla}$ , usually written just as  $\nabla$ , is the <u>w:Levi-Civita connection</u> warning:  $\Gamma^{\nu}_{\lambda\mu}$  are NOT the components of a tensor

# • $\widetilde{\nabla}$ applied to a (m,n)-tensor field on a manifold gives an (m,n+1)-tensor field

mathematically deeper:  $\widetilde{\nabla}$ , usually written just as  $\nabla$ , is the <u>w:Levi-Civita connection</u> warning:  $\Gamma^{\nu}_{\lambda\mu}$  are NOT the components of a tensor

•  $\widetilde{\nabla}$  applied to a (m, n)-tensor field on a manifold gives an (m, n+1)-tensor field

so far we showed how  $\widetilde{\nabla}$  applied to a (0,0)-tensor field = scalar field  $\phi$  gives a (0,1)-tensor field = one-form field =  $(\widetilde{d}\phi)_{\mu}\tilde{e}^{\mu}$ 

mathematically deeper:  $\widetilde{\nabla}$ , usually written just as  $\nabla$ , is the <u>w:Levi-Civita connection</u> warning:  $\Gamma^{\nu}_{\lambda\mu}$  are NOT the components of a tensor

•  $\widetilde{\nabla}$  applied to a (m, n)-tensor field on a manifold gives an (m, n+1)-tensor field

so far we showed how  $\widetilde{\nabla}$  applied to a (0,0)-tensor field = scalar field  $\phi$  gives a (0,1)-tensor field = one-form field =  $\nabla_{\mu}\phi \tilde{e}^{\mu} = \partial_{\mu}\phi \tilde{e}^{\mu}$ 

mathematically deeper:  $\widetilde{\nabla}$ , usually written just as  $\nabla$ , is the <u>w:Levi-Civita connection</u> warning:  $\Gamma^{\nu}_{\lambda\mu}$  are NOT the components of a tensor

•  $\widetilde{\nabla}$  applied to a (m,n)-tensor field on a manifold gives an (m,n+1)-tensor field

so far we showed how  $\widetilde{\nabla}$  applied to a (0,0)-tensor field = scalar field  $\phi$  gives a (0,1)-tensor field = one-form field =  $\nabla_{\mu}\phi \tilde{e}^{\mu} = \partial_{\mu}\phi \tilde{e}^{\mu}$ 

and  $\widetilde{\nabla}$  on a (1,0)-tensor field = vector field  $\vec{A}$  gives a (1,1)-tensor with components  $\nabla_{\mu}A^{\nu} = \partial_{\mu}A^{\nu} + A^{\lambda}\Gamma^{\nu}_{\lambda\mu}$ 

 $1\cdot\Lambda \ \Sigma\cdot \widetilde{\mathrm{d}}\phi\cdot\langle
angle\cdot \mathsf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot 
abla ec{A}$ ;  $M\cdot 
abla_{V}=0\cdot\mathbf{R}\cdot>$  SR+ $\epsilon$ GR

mathematically deeper:  $\widetilde{\nabla}$ , usually written just as  $\nabla$ , is the <u>w:Levi-Civita connection</u> warning:  $\Gamma^{\nu}_{\lambda\mu}$  are NOT the components of a tensor

•  $\widetilde{\nabla}$  applied to a (m,n)-tensor field on a manifold gives an (m,n+1)-tensor field

so far we showed how  $\widetilde{\nabla}$  applied to a (0,0)-tensor field = scalar field  $\phi$  gives a (0,1)-tensor field = one-form field =  $\nabla_{\mu}\phi \tilde{e}^{\mu} = \partial_{\mu}\phi \tilde{e}^{\mu}$ 

and  $\widetilde{\nabla}$  on a (1,0)-tensor field = vector field  $\vec{A}$  gives a (1,1)-tensor with components  $\nabla_{\mu}A^{\nu} = \partial_{\mu}A^{\nu} + A^{\lambda}\Gamma^{\nu}_{\lambda\mu}$ 

• tensors: 
$$\widetilde{\nabla}\phi = \widetilde{\nabla}_{\mu}\phi \tilde{e}^{\mu}$$
,

mathematically deeper:  $\widetilde{\nabla}$ , usually written just as  $\nabla$ , is the <u>w:Levi-Civita connection</u> warning:  $\Gamma^{\nu}_{\lambda\mu}$  are NOT the components of a tensor

•  $\widetilde{\nabla}$  applied to a (m, n)-tensor field on a manifold gives an (m, n+1)-tensor field

so far we showed how  $\widetilde{\nabla}$  applied to a (0,0)-tensor field = scalar field  $\phi$  gives a (0,1)-tensor field = one-form field =  $\nabla_{\mu}\phi \tilde{e}^{\mu} = \partial_{\mu}\phi \tilde{e}^{\mu}$ 

and  $\widetilde{\nabla}$  on a (1,0)-tensor field = vector field  $\vec{A}$  gives a (1,1)-tensor with components  $\nabla_{\mu}A^{\nu} = \partial_{\mu}A^{\nu} + A^{\lambda}\Gamma^{\nu}_{\lambda\mu}$ 

• tensors: 
$$\widetilde{\nabla}\phi = \widetilde{\nabla}_{\mu}\phi \widetilde{e}^{\mu}$$
,  $\widetilde{\nabla}\vec{A} = \left(\partial_{\mu}A^{\nu} + A^{\lambda}\Gamma^{\nu}_{\ \lambda\mu}\right)\widetilde{e}^{\mu}\otimes\vec{e}_{\nu}$ 

mathematically deeper:  $\widetilde{\nabla}$ , usually written just as  $\nabla$ , is the <u>w:Levi-Civita connection</u> warning:  $\Gamma^{\nu}_{\lambda\mu}$  are NOT the components of a tensor

•  $\widetilde{\nabla}$  applied to a (m,n)-tensor field on a manifold gives an (m,n+1)-tensor field

so far we showed how  $\widetilde{\nabla}$  applied to a (0,0)-tensor field = scalar field  $\phi$  gives a (0,1)-tensor field = one-form field =  $\nabla_{\mu}\phi \tilde{e}^{\mu} = \partial_{\mu}\phi \tilde{e}^{\mu}$ 

and  $\widetilde{\nabla}$  on a (1,0)-tensor field = vector field  $\vec{A}$  gives a (1,1)-tensor with components  $\nabla_{\mu}A^{\nu} = \partial_{\mu}A^{\nu} + A^{\lambda}\Gamma^{\nu}_{\lambda\mu}$ 

• tensors: 
$$\widetilde{\nabla}\phi = \widetilde{\nabla}_{\mu}\phi \tilde{e}^{\mu}$$
,  $\widetilde{\nabla}\vec{A} = \left(\partial_{\mu}A^{\nu} + A^{\lambda}\Gamma^{\nu}_{\ \lambda\mu}\right)\tilde{e}^{\mu}\otimes\vec{e}_{\nu}$ 

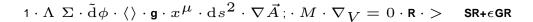
• not components of tensor:  $\Gamma^{\nu}_{\lambda\mu}$ 

how does a one-form change with position?  $\widetilde{\nabla} \tilde{A} = ?$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \overrightarrow{A}$  shows that we again need  $\partial_{\mu} \widetilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \widetilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \overrightarrow{A}$  shows that we again need  $\partial_{\mu} \widetilde{e}^{\nu} = F^{\nu}_{\ \lambda\mu} \widetilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\ \lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\lambda\mu}$  to  $F^{\nu}_{\lambda\mu}$  ?



evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \overrightarrow{A}$  shows that we again need  $\partial_{\mu} \widetilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \widetilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\lambda\mu}$  to  $F^{\nu}_{\lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \overrightarrow{A}$  shows that we again need  $\partial_{\mu} \widetilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \widetilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$  $\partial_{\mu} \delta^{\nu}_{\lambda} = 0$  (obviously)

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \overrightarrow{A}$  shows that we again need  $\partial_{\mu} \widetilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \widetilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$ 

$$0 = \partial_{\mu} \delta^{\nu}_{\ \lambda} = \partial_{\mu} \left( \left\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \right\rangle \right)$$

## **GR: gradient of one-form** $\widetilde{\nabla} \widetilde{A}$

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \overrightarrow{A}$  shows that we again need  $\partial_{\mu} \widetilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \widetilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$ 

$$0 = \partial_{\mu} \delta^{\nu}_{\ \lambda} = \partial_{\mu} \left( \left\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \right\rangle \right)$$

can we use the product rule with this scalar product?  $\partial_{\mu}\left(\left\langle \tilde{A}, \vec{B} \right\rangle\right) = ?$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \vec{A}$  shows that we again need  $\partial_{\mu} \tilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \tilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$ 

$$0 = \partial_{\mu} \delta^{\nu}_{\lambda} = \partial_{\mu} \left( \left\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \right\rangle \right)$$

can we use the product rule with this scalar product?  $\partial_{\mu}\left(\left\langle \tilde{A}, \vec{B} \right\rangle\right) = \partial_{\mu}\left(A_{\nu}B^{\nu}\right)$  in some coordinate basis

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \vec{A}$  shows that we again need  $\partial_{\mu} \tilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \tilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$  $0 = \partial_{\mu} \delta^{\nu}_{\lambda} = \partial_{\mu} \left( \langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle \right)$ 

can we use the product rule with this scalar product?

$$\partial_{\mu}\left(\left\langle \tilde{A}, \vec{B} \right\rangle\right) = \partial_{\mu}\left(A_{\nu}B^{\nu}\right)$$

 $= (\partial_{\mu}A_{\nu})B^{\nu} + A_{\nu}(\partial_{\mu}B^{\nu})$  by product rule on functions

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \overrightarrow{A}$  shows that we again need  $\partial_{\mu} \widetilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \widetilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$  $0 = \partial_{\mu} \delta^{\nu}_{\lambda} = \partial_{\mu} \left( \langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle \right)$ 

can we use the product rule with this scalar product?

$$\partial_{\mu} \left( \left\langle \tilde{A}, \vec{B} \right\rangle \right) = \partial_{\mu} \left( A_{\nu} B^{\nu} \right)$$
$$= \left( \partial_{\mu} A_{\nu} \right) B^{\nu} + A_{\nu} \left( \partial_{\mu} B^{\nu} \right)$$
$$= \left\langle \partial_{\mu} \tilde{A}, \vec{B} \right\rangle + \left\langle \tilde{A}, \partial_{\mu} \vec{B} \right\rangle \text{ since }$$
$$\partial_{\mu} \tilde{A} = \left( \partial_{\mu} A_{0}, \partial_{\mu} A_{1}, \partial_{\mu} A_{2}, \partial_{\mu} A_{3} \right)$$

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \overrightarrow{A}$  shows that we again need  $\partial_{\mu} \widetilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \widetilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$ 

$$0 = \partial_{\mu} \delta^{\nu}_{\ \lambda} = \partial_{\mu} \left( \left\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \right\rangle \right)$$

product rule holds:  $\partial_{\mu}\left(\left\langle \tilde{A}, \vec{B} \right\rangle\right) = \left\langle \partial_{\mu}\tilde{A}, \vec{B} \right\rangle + \left\langle \tilde{A}, \partial_{\mu}\vec{B} \right\rangle$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \overrightarrow{A}$  shows that we again need  $\partial_{\mu} \widetilde{e}^{\nu} = F^{\nu}_{\ \lambda\mu} \widetilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\ \lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$  $0 = \partial_{\mu} \delta^{\nu}_{\lambda} = \partial_{\mu} \left( \langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle \right)$ 

product rule holds: 
$$\partial_{\mu} \left( \left\langle \tilde{A}, \vec{B} \right\rangle \right) = \left\langle \partial_{\mu} \tilde{A}, \vec{B} \right\rangle + \left\langle \tilde{A}, \partial_{\mu} \vec{B} \right\rangle$$
  
so  $0 = \left\langle \partial_{\mu} \tilde{e}^{\nu}, \vec{e}_{\lambda} \right\rangle + \left\langle \tilde{e}^{\nu}, \partial_{\mu} \vec{e}_{\lambda} \right\rangle$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \vec{A}$  shows that we again need  $\partial_{\mu} \tilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \tilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \tilde{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$   $0 = \partial_{\mu} \delta^{\nu}_{\lambda} = \partial_{\mu} \left( \langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle \right)$ product rule holds:  $\partial_{\mu} \left( \left\langle \tilde{A}, \vec{B} \right\rangle \right) = \left\langle \partial_{\mu} \tilde{A}, \vec{B} \right\rangle + \left\langle \tilde{A}, \partial_{\mu} \vec{B} \right\rangle$ so  $0 = \langle \partial_{\mu} \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle + \langle \tilde{e}^{\nu}, \partial_{\mu} \vec{e}_{\lambda} \rangle$  $= \left\langle F^{\nu}_{\kappa\mu} \tilde{e}^{\kappa}, \vec{e}_{\lambda} \right\rangle + \left\langle \tilde{e}^{\nu}, \Gamma^{\kappa}_{\lambda\mu} \vec{e}_{\kappa} \right\rangle$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \vec{A}$  shows that we again need  $\partial_{\mu} \tilde{e}^{\nu} = F^{\nu}_{\ \lambda\mu} \tilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\ \lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$   $0 = \partial_{\mu} \delta^{\nu}_{\lambda} = \partial_{\mu} \left( \langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle \right)$ product rule holds:  $\partial_{\mu} \left( \left\langle \tilde{A}, \vec{B} \right\rangle \right) = \left\langle \partial_{\mu} \tilde{A}, \vec{B} \right\rangle + \left\langle \tilde{A}, \partial_{\mu} \vec{B} \right\rangle$ so  $0 = \langle \partial_{\mu} \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle + \langle \tilde{e}^{\nu}, \partial_{\mu} \vec{e}_{\lambda} \rangle$  $= F^{\nu}_{\kappa\mu} \left\langle \tilde{e}^{\kappa}, \vec{e}_{\lambda} \right\rangle + \Gamma^{\kappa}_{\lambda\mu} \left\langle \tilde{e}^{\nu}, \vec{e}_{\kappa} \right\rangle$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \vec{A}$  shows that we again need  $\partial_{\mu} \tilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \tilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$   $0 = \partial_{\mu} \delta^{\nu}_{\lambda} = \partial_{\mu} \left( \langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle \right)$ product rule holds:  $\partial_{\mu} \left( \left\langle \tilde{A}, \vec{B} \right\rangle \right) = \left\langle \partial_{\mu} \tilde{A}, \vec{B} \right\rangle + \left\langle \tilde{A}, \partial_{\mu} \vec{B} \right\rangle$ so  $0 = \langle \partial_{\mu} \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle + \langle \tilde{e}^{\nu}, \partial_{\mu} \vec{e}_{\lambda} \rangle$  $= F^{\nu}_{\lambda\mu} + \Gamma^{\nu}_{\lambda\mu}$  since  $\langle \tilde{e}^{\kappa}, \vec{e}_{\lambda} \rangle = \delta^{\kappa}_{\lambda}$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \vec{A}$  shows that we again need  $\partial_{\mu} \tilde{e}^{\nu} = F^{\nu}_{\lambda\mu} \tilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \tilde{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$   $0 = \partial_{\mu} \delta^{\nu}_{\lambda} = \partial_{\mu} \left( \langle \tilde{e}^{\nu}, \tilde{e}_{\lambda} \rangle \right)$ product rule holds:  $\partial_{\mu} \left( \left\langle \tilde{A}, \vec{B} \right\rangle \right) = \left\langle \partial_{\mu} \tilde{A}, \vec{B} \right\rangle + \left\langle \tilde{A}, \partial_{\mu} \vec{B} \right\rangle$ so  $0 = \left\langle \partial_{\mu} \tilde{e}^{\nu}, \tilde{e}_{\lambda} \right\rangle + \left\langle \tilde{e}^{\nu}, \partial_{\mu} \tilde{e}_{\lambda} \right\rangle$   $= F^{\nu}_{\lambda\mu} + \Gamma^{\nu}_{\lambda\mu}$  since  $\left\langle \tilde{e}^{\kappa}, \tilde{e}_{\lambda} \right\rangle = \delta^{\kappa}_{\lambda}$ hence,  $\partial_{\mu} \tilde{e}^{\nu} =: F^{\nu}_{\lambda\mu} \tilde{e}^{\lambda} = -\Gamma^{\nu}_{\lambda\mu} \tilde{e}^{\lambda}$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \vec{A}$  shows that we again need  $\partial_{\mu} \tilde{e}^{\nu} = F^{\nu}_{\ \lambda\mu} \tilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\ \lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$  $0 = \partial_{\mu} \delta^{\nu}_{\lambda} = \partial_{\mu} \left( \langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle \right)$ product rule holds:  $\partial_{\mu}\left(\left\langle \tilde{A}, \vec{B} \right\rangle\right) = \left\langle \partial_{\mu}\tilde{A}, \vec{B} \right\rangle + \left\langle \tilde{A}, \partial_{\mu}\vec{B} \right\rangle$ SO  $0 = \langle \partial_{\mu} \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle + \langle \tilde{e}^{\nu}, \partial_{\mu} \vec{e}_{\lambda} \rangle$  $=F^{\nu}_{\lambda\mu}+\Gamma^{\nu}_{\lambda\mu}$  since  $\langle \tilde{e}^{\kappa}, \vec{e}_{\lambda} \rangle = \delta^{\kappa}_{\lambda}$ hence,  $\partial_{\mu}\tilde{e}^{\nu} =: F^{\nu}_{\lambda\mu}\tilde{e}^{\lambda} = -\Gamma^{\nu}_{\lambda\mu}\tilde{e}^{\lambda}$  $\nabla_{\mu}A^{\nu} = \partial_{\mu}A^{\nu} + A^{\lambda}\Gamma^{\nu}_{\ \lambda\mu} \quad , \quad \nabla_{\mu}A_{\nu} = \partial_{\mu}A_{\nu} - A_{\lambda}\Gamma^{\lambda}_{\ \mu\nu}$ 

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\mathrm{SR+}\epsilon\mathrm{GR}$ 

evaluating  $\widetilde{\nabla} \widetilde{A}$  as we did  $\widetilde{\nabla} \vec{A}$  shows that we again need  $\partial_{\mu} \tilde{e}^{\nu} = F^{\nu}_{\ \lambda\mu} \tilde{e}^{\lambda}$  for some coefficients  $F^{\nu}_{\ \lambda\mu}$ 

how can we relate  $\Gamma^{\nu}_{\ \lambda\mu}$  to  $F^{\nu}_{\ \lambda\mu}$  ?

relation between vectors and one-forms:  $\langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle = \delta^{\nu}_{\lambda}$  $0 = \partial_{\mu} \delta^{\nu}_{\lambda} = \partial_{\mu} \left( \langle \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle \right)$ product rule holds:  $\partial_{\mu}\left(\left\langle \tilde{A}, \vec{B} \right\rangle\right) = \left\langle \partial_{\mu}\tilde{A}, \vec{B} \right\rangle + \left\langle \tilde{A}, \partial_{\mu}\vec{B} \right\rangle$ SO  $0 = \langle \partial_{\mu} \tilde{e}^{\nu}, \vec{e}_{\lambda} \rangle + \langle \tilde{e}^{\nu}, \partial_{\mu} \vec{e}_{\lambda} \rangle$  $=F^{\nu}_{\lambda\mu}+\Gamma^{\nu}_{\lambda\mu}$  since  $\langle \tilde{e}^{\kappa}, \vec{e}_{\lambda} \rangle = \delta^{\kappa}_{\lambda}$ hence,  $\partial_{\mu}\tilde{e}^{\nu} =: F^{\nu}_{\lambda\mu}\tilde{e}^{\lambda} = -\Gamma^{\nu}_{\lambda\mu}\tilde{e}^{\lambda}$  $A^{\nu}_{;\mu} = A^{\nu}_{,\mu} + A^{\lambda} \Gamma^{\nu}_{\lambda\mu} \quad , \quad A_{\nu;\mu} = A_{\nu,\mu} - A_{\lambda} \Gamma^{\lambda}_{\mu\nu}$ 

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\,\cdot\,>\quad\mathsf{SR+}\epsilon\mathsf{GR}$ 

similarly, we can write the (0,3)-tensor  $\widetilde{\nabla} \mathbf{g} = (\nabla_{\lambda} g_{\mu\nu}) \tilde{e}^{\lambda} \otimes \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ giving  $\nabla_{\lambda} g_{\mu\nu} = \partial_{\lambda} g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda} g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda} g_{\mu\kappa}$ 

similarly, we can write the (0,3)-tensor  $\widetilde{\nabla} \mathbf{g} = (\nabla_{\lambda} g_{\mu\nu}) \tilde{e}^{\lambda} \otimes \tilde{e}^{\mu} \otimes \tilde{e}^{\nu}$ giving  $\nabla_{\lambda} g_{\mu\nu} = \partial_{\lambda} g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda} g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda} g_{\mu\kappa}$ also  $\widetilde{\nabla} \mathbf{g}^{-1} = (\nabla_{\lambda} g^{\mu\nu}) \tilde{e}^{\lambda} \otimes \vec{e}_{\mu} \otimes \vec{e}_{\nu}$ and  $\nabla_{\lambda} g^{\mu\nu} = \partial_{\lambda} g^{\mu\nu} + \Gamma^{\mu}_{\ \kappa\lambda} g_{\kappa\nu} + \Gamma^{\nu}_{\ \kappa\lambda} g_{\mu\kappa}$ 

similarly, we can write the (0,3)-tensor  $\widetilde{\nabla} \mathbf{g} = (\nabla_{\lambda} g_{\mu\nu}) \widetilde{e}^{\lambda} \otimes \widetilde{e}^{\mu} \otimes \widetilde{e}^{\nu}$ giving  $\nabla_{\lambda} g_{\mu\nu} = \partial_{\lambda} g_{\mu\nu} - \Gamma^{\kappa}_{\mu\lambda} g_{\kappa\nu} - \Gamma^{\kappa}_{\nu\lambda} g_{\mu\kappa}$ also  $\widetilde{\nabla} \mathbf{g}^{-1} = (\nabla_{\lambda} g^{\mu\nu}) \widetilde{e}^{\lambda} \otimes \overrightarrow{e}_{\mu} \otimes \overrightarrow{e}_{\nu}$ and  $\nabla_{\lambda} g^{\mu\nu} = \partial_{\lambda} g^{\mu\nu} + \Gamma^{\mu}_{\kappa\lambda} g_{\kappa\nu} + \Gamma^{\nu}_{\kappa\lambda} g_{\mu\kappa}$ 

Do we know anything interesting about  $\widetilde{\nabla} \mathbf{g}$  for the manifolds of interest to GR?

similarly, we can write the (0,3)-tensor  $\widetilde{\nabla} \mathbf{g} = (\nabla_{\lambda} g_{\mu\nu}) \widetilde{e}^{\lambda} \otimes \widetilde{e}^{\mu} \otimes \widetilde{e}^{\nu}$ giving  $\nabla_{\lambda} g_{\mu\nu} = \partial_{\lambda} g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda} g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda} g_{\mu\kappa}$ also  $\widetilde{\nabla} \mathbf{g}^{-1} = (\nabla_{\lambda} g^{\mu\nu}) \widetilde{e}^{\lambda} \otimes \overrightarrow{e}_{\mu} \otimes \overrightarrow{e}_{\nu}$ and  $\nabla_{\lambda} g^{\mu\nu} = \partial_{\lambda} g^{\mu\nu} + \Gamma^{\mu}_{\ \kappa\lambda} g_{\kappa\nu} + \Gamma^{\nu}_{\ \kappa\lambda} g_{\mu\kappa}$ 

Do we know anything interesting about  $\widetilde{\nabla} \mathbf{g}$  for the manifolds of interest to GR?

First, we need a rough description of the manifolds we need for GR.

topological manifold *M* w:Manifold#Mathematical\_definition

only topological properties needed

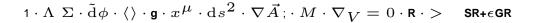
topological manifold *M* w:Manifold#Mathematical\_definition

- only topological properties needed
- no differentiability, no metric needed

topological manifold *M* w:Manifold#Mathematical\_definition

• only topological properties needed

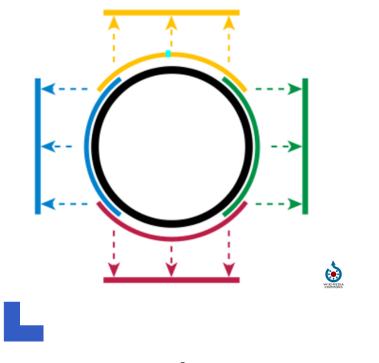
next: relation with  $\mathbb{R}^4$  (or  $M^4$ )



topological manifold *M* w:Manifold#Mathematical\_definition

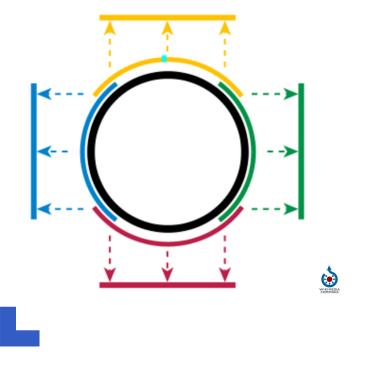
• only topological properties needed

next: relation with  $\mathbb{R}^4$  (or  $M^4$ )



topological manifold *M* w:Manifold#Mathematical\_definition

 $\bullet$  only topological properties needed next: relation with  $\mathbb{R}^4$  (or  $M^4)$ 

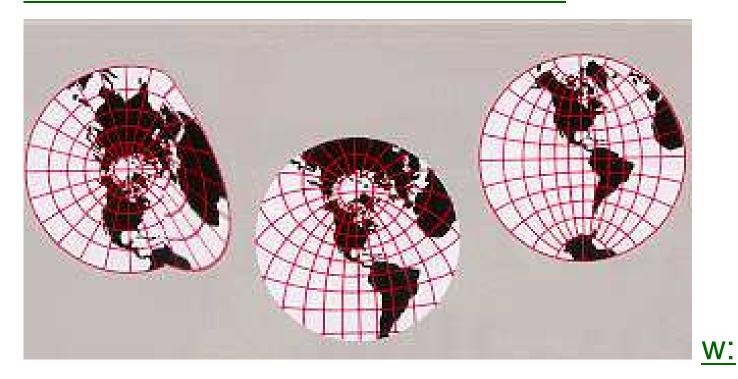


#### w:Manifold

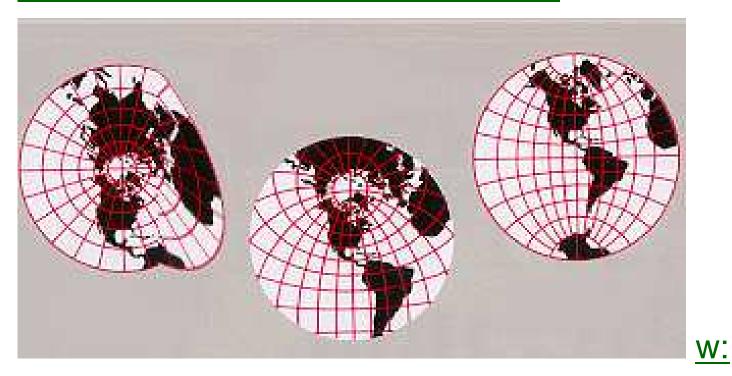
- chart := function  $\phi_{\alpha}$ from part of pseudo-4manifold M to part of M<sup>4</sup> (Minkowski)
- atlas := set of overlapping charts that cover M

if every transition chart  $:= \phi_{\beta} \circ \phi_{\alpha}^{-1}$  in an atlas for M is differentiable on  $\mathbb{R}^4$  (or  $M^4$ ), then M is a w:differentiable 4-(pseudo-)manifold

if every transition chart  $:= \phi_{\beta} \circ \phi_{\alpha}^{-1}$  in an atlas for M is differentiable on  $\mathbb{R}^4$  (or  $M^4$ ), then M is a w:differentiable 4-(pseudo-)manifold

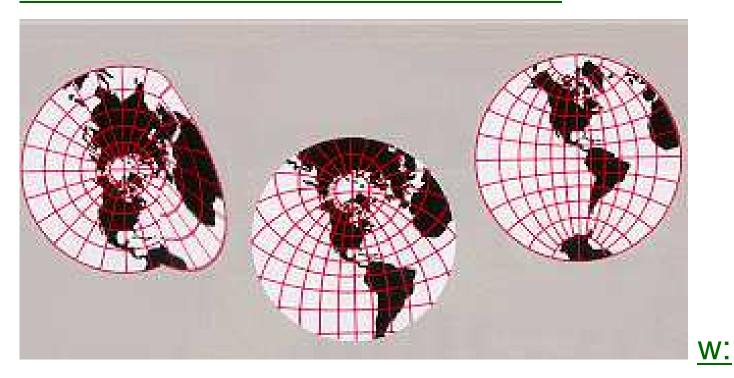


if every transition chart  $:= \phi_{\beta} \circ \phi_{\alpha}^{-1}$  in an atlas for M is differentiable on  $\mathbb{R}^4$  (or  $M^4$ ), then M is a w:differentiable 4-(pseudo-)manifold



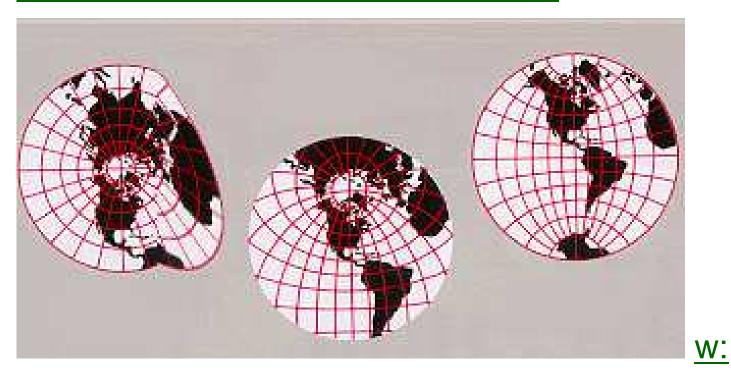
projections (left-to-right)  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$  from  $S^2$  to  $\mathbb{R}^2$ 

if every transition chart  $:= \phi_{\beta} \circ \phi_{\alpha}^{-1}$  in an atlas for M is differentiable on  $\mathbb{R}^4$  (or  $M^4$ ), then M is a w:differentiable 4-(pseudo-)manifold



 $\phi_1$  is not differentiable, so  $\phi_1 \circ \phi_2^{-1}$  is not differentiable

if every transition chart  $:= \phi_{\beta} \circ \phi_{\alpha}^{-1}$  in an atlas for M is differentiable on  $\mathbb{R}^4$  (or  $M^4$ ), then M is a w:differentiable 4-(pseudo-)manifold



atlas not enough to show that  $S^2 = differentiable$ 2-manifold

if every transition chart  $:= \phi_{\beta} \circ \phi_{\alpha}^{-1}$  in an atlas for M is differentiable on  $\mathbb{R}^4$  (or M<sup>4</sup>), then M is a w:differentiable 4-(pseudo-)manifold

if every transition chart  $:= \phi_{\beta} \circ \phi_{\alpha}^{-1}$  in an atlas for M is differentiable on  $\mathbb{R}^4$  (or M<sup>4</sup>), then M is a w:differentiable 4-(pseudo-)manifold

if  $\forall k \ge 1$ ,  $\exists k$ -th derivatives, then M is a smooth 4-(pseudo-)manifold

if every transition chart :=  $\phi_{\beta} \circ \phi_{\alpha}^{-1}$  in an atlas for M is differentiable on  $\mathbb{R}^4$  (or M<sup>4</sup>), then M is a w:differentiable 4-(pseudo-)manifold

if  $\forall k \ge 1$ ,  $\exists k$ -th derivatives, then M is a smooth 4-(pseudo-)manifold

if a (pseudo-)<u>w:Riemannian metric</u> g can be added to M, then (M,g) is a (pseudo-)Riemannian 4-manifold

if every transition chart :=  $\phi_{\beta} \circ \phi_{\alpha}^{-1}$  in an atlas for M is differentiable on  $\mathbb{R}^4$  (or M<sup>4</sup>), then M is a w:differentiable 4-(pseudo-)manifold

if  $\forall k \ge 1$ ,  $\exists k$ -th derivatives, then M is a smooth 4-(pseudo-)manifold

if a (pseudo-)<u>w:Riemannian metric</u> g can be added to M, then (M,g) is a (pseudo-)Riemannian 4-manifold if g has signature (1, n - 1) (i.e. (-, +, +, +) or (+, -, -, -), etc.), then (M,g) is a Lorentzian *n*-manifold

topological manifolds

topological manifolds

differentiable (pseudo-)manifolds

topological manifolds

differentiable (pseudo-)manifolds

smooth (pseudo-)manifolds

topological manifolds

differentiable (pseudo-)manifolds

smooth (pseudo-)manifolds

(pseudo-)Riemannian manifolds

topological manifolds

differentiable (pseudo-)manifolds

smooth (pseudo-)manifolds

(pseudo-)Riemannian manifolds

Lorentzian manifolds

topological manifolds

differentiable (pseudo-)manifolds

smooth (pseudo-)manifolds

(pseudo-)Riemannian manifolds

\_orentzian manifolds

Lorentzian 4-manifolds

# **GR:** smooth manifold and $\widetilde{\nabla}\mathbf{g}$

topological manifolds

differentiable (pseudo-)manifolds

smooth (pseudo-)manifolds

(pseudo-)Riemannian manifolds

Lorentzian manifolds

Lorentzian 4-manifolds

GR: assume that spacetime is a Lorentzian 4-manifold

# **GR:** smooth manifold and $\widetilde{\nabla}\mathbf{g}$

from above:

$$\nabla_{\lambda}g_{\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa}$$

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\mathrm{SR+}\epsilon\mathrm{GR}$ 

#### **GR:** smooth manifold and $\widetilde{\nabla}$ g

from above:

$$\nabla_{\lambda}g_{\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa}$$

in the tangent space at  $\mathbf{x}$ ,  $\exists$  coordinate basis  $\vec{e}_{\bar{\mu}}$  with  $g_{\bar{\mu}\bar{\nu}} = \eta_{\bar{\mu}\bar{\nu}} = \text{diag}(-1, 1, 1, 1) = g^{\bar{\mu}\bar{\nu}}$ 

 $\Rightarrow \partial_{\bar{\lambda}} g_{\bar{\mu}\bar{\nu}} = \partial_{\bar{\lambda}} \eta_{\bar{\mu}\bar{\nu}}$ 

#### **GR:** smooth manifold and $\widetilde{\nabla}$ g

from above:

$$\nabla_{\lambda}g_{\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa}$$

in the tangent space at  $\mathbf{x}$ ,  $\exists$  coordinate basis  $\vec{e}_{\mu}$  with

$$g_{\bar{\mu}\bar{\nu}} = \eta_{\bar{\mu}\bar{\nu}} = \operatorname{diag}(-1, 1, 1, 1) = g^{\bar{\mu}\bar{\nu}} \\ \Rightarrow \partial_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}} = \partial_{\bar{\lambda}}\eta_{\bar{\mu}\bar{\nu}} = 0$$

#### **GR:** smooth manifold and $\widetilde{\nabla}\mathbf{g}$

from above:

$$\nabla_{\lambda}g_{\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa}$$

in the tangent space at  $\mathbf{x}$ ,  $\exists$  coordinate basis  $\vec{e}_{\vec{\mu}}$  with

$$g_{\bar{\mu}\bar{\nu}} = \eta_{\bar{\mu}\bar{\nu}} = \text{diag}(-1, 1, 1, 1) = g^{\bar{\mu}\bar{\nu}}$$
  

$$\Rightarrow \partial_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}} = \partial_{\bar{\lambda}}\eta_{\bar{\mu}\bar{\nu}} = 0$$
  
**also**,  $\Gamma^{\bar{\lambda}}_{\ \bar{\nu}\bar{\mu}}\vec{e}_{\bar{\lambda}} := \vec{e}_{\bar{\nu},\bar{\mu}} = \partial_{\bar{\mu}}\vec{e}_{\bar{\nu}}$ 

$$1\cdot\Lambda\ \Sigma\cdot ilde{\mathrm{d}}\phi\cdot\langle
angle\cdot\mathsf{g}\cdot x^\mu\cdot\mathrm{d}s^2\cdot
ablaec{A}$$
;  $M\cdot
abla_V=0\cdot\mathsf{R}\cdot>$  SR+ $\epsilon$ GR

### **GR:** smooth manifold and $\widetilde{\nabla}$ g

from above:

$$\nabla_{\lambda}g_{\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa}$$

in the tangent space at  $\mathbf{x}$ ,  $\exists$  coordinate basis  $\vec{e}_{\mu}$  with

$$g_{\bar{\mu}\bar{\nu}} = \eta_{\bar{\mu}\bar{\nu}} = \text{diag}(-1, 1, 1, 1) = g^{\bar{\mu}\bar{\nu}}$$
$$\Rightarrow \partial_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}} = \partial_{\bar{\lambda}}\eta_{\bar{\mu}\bar{\nu}} = 0$$
$$\text{also, } \Gamma^{\bar{\lambda}}_{\bar{\nu}\bar{\mu}}\vec{e}_{\bar{\lambda}} := \vec{e}_{\bar{\nu},\bar{\mu}} = \partial_{\bar{\mu}}\vec{e}_{\bar{\nu}}$$

#### **GR:** smooth manifold and $\widetilde{\nabla}$ g

from above:

$$\begin{aligned} \nabla_{\lambda}g_{\mu\nu} &= \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa} \\ \text{in the tangent space at } \mathbf{x}, \ \exists \text{ coordinate basis } \vec{e}_{\bar{\mu}} \text{ with} \\ g_{\bar{\mu}\bar{\nu}} &= \eta_{\bar{\mu}\bar{\nu}} = \text{diag}(-1, 1, 1, 1) = g^{\bar{\mu}\bar{\nu}} \\ \Rightarrow \partial_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}} &= \partial_{\bar{\lambda}}\eta_{\bar{\mu}\bar{\nu}} = 0 \\ \text{also, } \Gamma^{\bar{\lambda}}_{\ \bar{\nu}\bar{\mu}}\vec{e}_{\bar{\lambda}} &:= \vec{e}_{\bar{\nu},\bar{\mu}} = \partial_{\bar{\mu}}\vec{e}_{\bar{\nu}} \\ \mathbf{M}^{4} \Rightarrow \Gamma^{\bar{\lambda}}_{\ \bar{\nu}\bar{\mu}}\vec{e}_{\bar{\lambda}} = 0 \end{aligned}$$

 $1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\mathrm{SR+}\epsilon\mathrm{GR}$ 

#### **GR:** smooth manifold and $\widetilde{\nabla}\mathbf{g}$

from above:

$$\nabla_{\lambda}g_{\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa}$$
  
in the tangent space at  $\mathbf{x}$ ,  $\exists$  coordinate basis  $\vec{e}_{\bar{\mu}}$  with  $g_{\bar{\mu}\bar{\nu}} = \eta_{\bar{\mu}\bar{\nu}} = \text{diag}(-1, 1, 1, 1) = g^{\bar{\mu}\bar{\nu}}$ 

$$\Rightarrow \partial_{\bar{\lambda}} g_{\bar{\mu}\bar{\nu}} = \partial_{\bar{\lambda}} \eta_{\bar{\mu}\bar{\nu}} = 0$$
  
also,  $\Gamma^{\bar{\lambda}}_{\ \bar{\nu}\bar{\mu}} \vec{e}_{\bar{\lambda}} := \vec{e}_{\bar{\nu},\bar{\mu}} = \partial_{\bar{\mu}} \vec{e}_{\bar{\nu}}$   
so  $\nabla_{\bar{\lambda}} g_{\bar{\mu}\bar{\nu}} = 0$ 

#### **GR:** smooth manifold and $\widetilde{\nabla}\mathbf{g}$

from above:

$$\nabla_{\lambda}g_{\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa}$$

in the tangent space at  $\mathbf{x}$ ,  $\exists$  coordinate basis  $\vec{e}_{\mu}$  with

$$g_{\bar{\mu}\bar{\nu}} = \eta_{\bar{\mu}\bar{\nu}} = \text{diag}(-1, 1, 1, 1) = g^{\bar{\mu}\bar{\nu}}$$
  

$$\Rightarrow \partial_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}} = \partial_{\bar{\lambda}}\eta_{\bar{\mu}\bar{\nu}} = 0$$
  
also,  $\Gamma^{\bar{\lambda}}_{\bar{\nu}\bar{\mu}}\vec{e}_{\bar{\lambda}} := \vec{e}_{\bar{\nu},\bar{\mu}} = \partial_{\bar{\mu}}\vec{e}_{\bar{\nu}}$   
So  $\nabla_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}} = 0$ 

so  $\widetilde{\nabla} \mathbf{g} = \mathbf{0}$  (also  $\widetilde{\nabla} \mathbf{g}^{-1} = 0$ ) on the tangent space, since if true in one coord system, also true in others

#### **GR:** smooth manifold and $\widetilde{\nabla}$ g

from above:

 $\begin{aligned} \nabla_{\lambda}g_{\mu\nu} &= \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa} \\ \text{in the tangent space at } \mathbf{x}, \ \exists \ \text{coordinate basis } \vec{e}_{\bar{\mu}} \text{ with} \\ g_{\bar{\mu}\bar{\nu}} &= \eta_{\bar{\mu}\bar{\nu}} = \text{diag}(-1,1,1,1) = g^{\bar{\mu}\bar{\nu}} \\ \Rightarrow \partial_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}} &= \partial_{\bar{\lambda}}\eta_{\bar{\mu}\bar{\nu}} = 0 \\ \text{also, } \Gamma^{\bar{\lambda}}_{\ \bar{\nu}\bar{\mu}}\vec{e}_{\bar{\lambda}} &:= \vec{e}_{\bar{\nu},\bar{\mu}} = \partial_{\bar{\mu}}\vec{e}_{\bar{\nu}} \\ \text{so } \nabla_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}} = 0 \\ \text{so } \nabla_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}} = 0 \\ \text{so } \nabla_{\bar{\lambda}}g = \mathbf{0} = \widetilde{\nabla}\mathbf{g}^{-1} \text{ on tangent space} \\ \dots \widetilde{\nabla}\mathbf{g} = \mathbf{0} = \widetilde{\nabla}\mathbf{g}^{-1} \text{ on } M \end{aligned}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

#### **GR:** smooth manifold and $\widetilde{\nabla}$ g

from above:

 $\nabla_{\lambda}g_{\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa}$ in the tangent space at  $\mathbf{x}$ ,  $\exists$  coordinate basis  $\vec{e}_{\bar{\mu}}$  with  $g_{\bar{\mu}\bar{\nu}} = \eta_{\bar{\mu}\bar{\nu}} = \text{diag}(-1, 1, 1, 1) = g^{\bar{\mu}\bar{\nu}}$  $\Rightarrow \partial_{\bar{\lambda}} g_{\bar{\mu}\bar{\nu}} = \partial_{\bar{\lambda}} \eta_{\bar{\mu}\bar{\nu}} = 0$ also,  $\Gamma^{\lambda}_{\ \overline{\nu}\overline{\mu}}\vec{e}_{\overline{\lambda}} := \vec{e}_{\overline{\nu},\overline{\mu}} = \partial_{\overline{\mu}}\vec{e}_{\overline{\nu}}$ SO  $\nabla_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}}=0$ so  $\widetilde{\nabla} \mathbf{g} = \mathbf{0} = \widetilde{\nabla} \mathbf{g}^{-1}$  on tangent space  $\dots \widetilde{\nabla} \mathbf{q} = \mathbf{0} = \widetilde{\nabla} \mathbf{q}^{-1}$  on M $\dots \Gamma^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\nu\mu}$  in any coord. basis (symmetric defn)

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}}\phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d}s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad SR+\epsilon GR$ 

#### **GR:** smooth manifold and $\widetilde{\nabla}\mathbf{g}$

from above:

 $\nabla_{\lambda}g_{\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\kappa}_{\ \mu\lambda}g_{\kappa\nu} - \Gamma^{\kappa}_{\ \nu\lambda}g_{\mu\kappa}$ in the tangent space at  $\mathbf{x}$ ,  $\exists$  coordinate basis  $\vec{e}_{\bar{\mu}}$  with  $g_{\bar{\mu}\bar{\nu}} = \eta_{\bar{\mu}\bar{\nu}} = \text{diag}(-1, 1, 1, 1) = g^{\bar{\mu}\bar{\nu}}$  $\Rightarrow \partial_{\bar{\lambda}} g_{\bar{\mu}\bar{\nu}} = \partial_{\bar{\lambda}} \eta_{\bar{\mu}\bar{\nu}} = 0$ also,  $\Gamma^{\lambda}_{\ \overline{\nu}\overline{\mu}}\vec{e}_{\overline{\lambda}} := \vec{e}_{\overline{\nu},\overline{\mu}} = \partial_{\overline{\mu}}\vec{e}_{\overline{\nu}}$ SO  $\nabla_{\bar{\lambda}}g_{\bar{\mu}\bar{\nu}}=0$ so  $\widetilde{\nabla} \mathbf{g} = \mathbf{0} = \widetilde{\nabla} \mathbf{g}^{-1}$  on tangent space  $\dots \widetilde{\nabla} \mathbf{q} = \mathbf{0} = \widetilde{\nabla} \mathbf{q}^{-1}$  on M $\dots \Gamma^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\nu\mu}$  in any coord. basis (symmetric defn)  $\Gamma^{\lambda}_{\ \mu\nu} = \frac{1}{2}g^{\lambda\kappa}(\partial_{\mu}g_{\nu\kappa} + \partial_{\nu}g_{\mu\kappa} - \partial_{\kappa}g_{\mu\nu})$  in a coordinate basis

•  $\widetilde{\nabla}\phi, \widetilde{\nabla}\vec{A}, \widetilde{\nabla}\tilde{A}$  gave how the fields  $\phi, \vec{A}$ , or  $\tilde{A}$  change around the manifold in general

- $\widetilde{\nabla}\phi, \widetilde{\nabla}\vec{A}, \widetilde{\nabla}\tilde{A}$  gave how the fields  $\phi, \vec{A}$ , or  $\tilde{A}$  change around the manifold in general
- how about moving along a specific curve?

- $\widetilde{\nabla}\phi, \widetilde{\nabla}\vec{A}, \widetilde{\nabla}\tilde{A}$  gave how the fields  $\phi, \vec{A}$ , or  $\tilde{A}$  change around the manifold in general
- how about moving along a specific curve?
- curve on manifold parametrised by a continuously changing real parameter  $\lambda$ :  $\mathbf{x}(\lambda)$

- $\widetilde{\nabla}\phi, \widetilde{\nabla}\vec{A}, \widetilde{\nabla}\tilde{A}$  gave how the fields  $\phi, \vec{A}$ , or  $\tilde{A}$  change around the manifold in general
- how about moving along a specific curve?

• curve on manifold parametrised by a continuously changing real parameter  $\lambda$ :  $\mathbf{x}(\lambda) = \{x^{\mu}(\lambda)\}$  in a coordinate basis

- $\widetilde{\nabla}\phi, \widetilde{\nabla}\vec{A}, \widetilde{\nabla}\tilde{A}$  gave how the fields  $\phi, \vec{A}$ , or  $\tilde{A}$  change around the manifold in general
- how about moving along a specific curve?
- curve on manifold parametrised by a continuously changing real parameter  $\lambda$ :  $\mathbf{x}(\lambda) = \{x^{\mu}(\lambda)\}$  in a coordinate basis
- can define tangent vectors along the curve, i.e.

 $\vec{V}(\lambda) := \frac{\mathrm{d}\vec{x}}{\mathrm{d}\lambda}$ 

- $\widetilde{\nabla}\phi, \widetilde{\nabla}\vec{A}, \widetilde{\nabla}\tilde{A}$  gave how the fields  $\phi, \vec{A}$ , or  $\tilde{A}$  change around the manifold in general
- how about moving along a specific curve?
- curve on manifold parametrised by a continuously changing real parameter  $\lambda$ :  $\mathbf{x}(\lambda) = \{x^{\mu}(\lambda)\}$  in a coordinate basis
- can define tangent vectors along the curve, i.e.

 $\vec{V}(\lambda) := \frac{\mathrm{d}\vec{x}}{\mathrm{d}\lambda} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}\vec{e}_{\mu}$ 

- $\widetilde{\nabla}\phi, \widetilde{\nabla}\vec{A}, \widetilde{\nabla}\tilde{A}$  gave how the fields  $\phi, \vec{A}$ , or  $\tilde{A}$  change around the manifold in general
- how about moving along a specific curve?
- curve on manifold parametrised by a continuously changing real parameter  $\lambda$ :  $\mathbf{x}(\lambda) = \{x^{\mu}(\lambda)\}$  in a coordinate basis
- can define tangent vectors along the curve, i.e.

$$\vec{V}(\lambda) := \frac{\mathrm{d}\vec{x}}{\mathrm{d}\lambda} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}\vec{e}_{\mu}$$

warning:  $\{x^{\mu}(\lambda)\}\$  at some  $\lambda$  on the manifold is a point on the manifold but NOT a vector; while  $d\vec{x}$  — in the tangent space — IS a vector

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

$$\frac{\mathrm{d}\phi}{\mathrm{d}\lambda} \equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

$$\frac{\mathrm{d}\phi}{\mathrm{d}\lambda} \equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle$$

or in a coordinate basis...

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

 $\frac{\mathrm{d}\phi}{\mathrm{d}\lambda} \equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle$  $= V^{\mu} \partial_{\mu} \phi$ 

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

$$\frac{\mathrm{d}\phi}{\mathrm{d}\lambda} \equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle$$

 $= V^{\mu} \partial_{\mu} \phi$ 

 $\nabla_V$  written by Bertschinger without  $\neg$  or  $\sim$  because  $\nabla_V$  T of tensor T has the same tensor order as T

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

 $\frac{\mathrm{d}\phi}{\mathrm{d}\lambda} \equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle$  $= V^{\mu} \partial_{\mu} \phi$ 

for a vector field:

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

 $\frac{\mathrm{d}\phi}{\mathrm{d}\lambda} \equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle$  $= V^{\mu} \partial_{\mu} \phi$  $\frac{\mathrm{d}\vec{A}}{\mathrm{d}\lambda} \equiv \nabla_V \vec{A} := \left\langle \widetilde{\nabla}\vec{A}, \vec{V} \right\rangle$ 

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

 $\begin{aligned} \frac{\mathrm{d}\phi}{\mathrm{d}\lambda} &\equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle \\ &= V^\mu \partial_\mu \phi \\ \frac{\mathrm{d}\vec{A}}{\mathrm{d}\lambda} &\equiv \nabla_V \vec{A} := \left\langle \widetilde{\nabla}\vec{A}, \vec{V} \right\rangle \end{aligned}$ 

or in a coordinate basis...

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

$$\begin{split} \frac{\mathrm{d}\phi}{\mathrm{d}\lambda} &\equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle \\ &= V^\mu \partial_\mu \phi \\ \frac{\mathrm{d}\vec{A}}{\mathrm{d}\lambda} &\equiv \nabla_V \vec{A} := \left\langle \widetilde{\nabla}\vec{A}, \vec{V} \right\rangle \\ &= V^\mu (\widetilde{\nabla}\vec{A})_\mu \end{split}$$

 $1\cdot\Lambda \ \Sigma\cdot \widetilde{\mathrm{d}}\phi\cdot\langle
angle\cdot \mathsf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot
abla ec{A}$ ;  $M\cdot
abla_{V}=0\cdot\mathbf{R}\cdot>$  SR+ $\epsilon$ GR

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

 $\begin{aligned} \frac{\mathrm{d}\phi}{\mathrm{d}\lambda} &\equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle \\ &= V^\mu \partial_\mu \phi \\ \frac{\mathrm{d}\vec{A}}{\mathrm{d}\lambda} &\equiv \nabla_V \vec{A} := \left\langle \widetilde{\nabla}\vec{A}, \vec{V} \right\rangle \\ &= V^\mu (\nabla_\mu A^\nu) \vec{e}_\nu \end{aligned}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR}_{\mathbf{f}} \epsilon \mathsf{GR}$ 

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

 $\begin{aligned} \frac{\mathrm{d}\phi}{\mathrm{d}\lambda} &\equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle \\ &= V^\mu \partial_\mu \phi \\ \frac{\mathrm{d}\vec{A}}{\mathrm{d}\lambda} &\equiv \nabla_V \vec{A} := \left\langle \widetilde{\nabla}\vec{A}, \vec{V} \right\rangle \\ &= V^\mu (\nabla_\mu A^\nu) \vec{e}_\nu \\ &= V^\mu (A^\nu_{,\mu} + A^\kappa \Gamma^\nu_{\,\kappa\mu}) \vec{e}_\nu \end{aligned}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

using  $\vec{V}(\lambda) := \frac{d\vec{x}}{d\lambda}$ , project covariant derivative to curve using scalar product  $\langle , \rangle$ 

$$\begin{split} \frac{\mathrm{d}\phi}{\mathrm{d}\lambda} &\equiv \nabla_V \phi := \left\langle \widetilde{\nabla}\phi, \vec{V} \right\rangle \\ &= V^{\mu} \partial_{\mu} \phi \\ \frac{\mathrm{d}\vec{A}}{\mathrm{d}\lambda} &\equiv \nabla_V \vec{A} := \left\langle \widetilde{\nabla}\vec{A}, \vec{V} \right\rangle \\ &= V^{\mu} (\nabla_{\mu} A^{\nu}) \vec{e}_{\nu} \\ &= V^{\mu} (A^{\nu}_{,\mu} + A^{\kappa} \Gamma^{\nu}_{\,\kappa\mu}) \vec{e}_{\nu} \end{split}$$

so in a coord basis,

$$\nabla_V \vec{A} = \left(\frac{\mathrm{d}A^{\nu}}{\mathrm{d}\lambda} + V^{\mu} A^{\kappa} \Gamma^{\nu}_{\ \kappa\mu}\right) \vec{e_{\nu}}$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \cdot M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

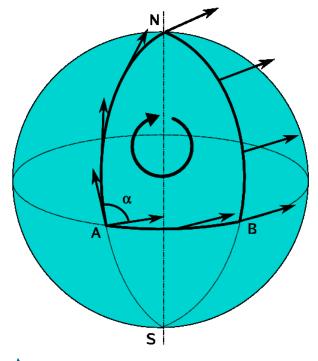
special (interesting) case: vector field  $\vec{A}$  and curve with tangents  $\vec{V} := \frac{d\vec{x}}{d\lambda}$  where  $\vec{A}$  "locally does not change direction"

special (interesting) case: vector field  $\vec{A}$  and curve with tangents  $\vec{V} := \frac{d\vec{x}}{d\lambda}$  where  $\vec{A}$  "locally does not change direction"

i.e.  $\nabla_V \vec{A} = 0$  $\nabla_V \vec{A} = 0$  defn: parallel transport of  $\vec{A}$  along path  $\mathbf{x}(\lambda)$ where  $\vec{V} := \frac{\mathrm{d}\vec{x}}{\mathrm{d}\lambda}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

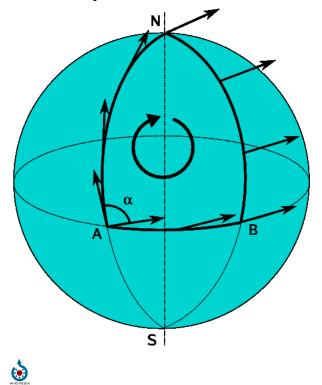
example:



WIKIMEDIA

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR+}\epsilon \mathsf{GR}$ 

example:



on S<sup>2</sup>, parallel transport of  $\vec{A}$  around a closed loop does not conserve  $\vec{A}$ 's direction

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

 $\nabla_V \vec{V} = 0$  defn: w:geodesic

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathsf{SR+}\epsilon \mathsf{GR}$ 

 $\nabla_V \vec{V} = 0$  defn: w:geodesic

- more general definition of "straight line" than "shortest distance between two points"
- tensorial definition independent of coordinate basis
- allows more than one "straight line" between two points
- $a \text{ and } b \text{ in a manifold} \text{consider } S^2, T^3$

 $\nabla_V \vec{V} = 0$  defn: w:geodesic

- more general definition of "straight line" than "shortest distance between two points"
- tensorial definition independent of coordinate basis
- $\bullet$  allows more than one "straight line" between two points a and b in a manifold consider S^2, T^3

i.e.  $\left(\frac{\mathrm{d}V^{\nu}}{\mathrm{d}\lambda} + V^{\mu}V^{\kappa}\Gamma^{\nu}_{\kappa\mu}\right)\vec{e}_{\nu} = \vec{0}$ 

 $\nabla_V \vec{V} = 0$  defn: <u>w:geodesic</u>

- more general definition of "straight line" than "shortest distance between two points"
- tensorial definition independent of coordinate basis
- $\bullet$  allows more than one "straight line" between two points a and b in a manifold consider S^2, T^3

i.e. 
$$\frac{\mathrm{d}V^{\nu}}{\mathrm{d}\lambda} + V^{\mu}V^{\kappa}\Gamma^{\nu}_{\ \kappa\mu} = 0 \ \forall \nu$$

 $\nabla_V \vec{V} = 0$  defn: <u>w:geodesic</u>

- more general definition of "straight line" than "shortest distance between two points"
- tensorial definition independent of coordinate basis
- $\bullet$  allows more than one "straight line" between two points a and b in a manifold consider S^2, T^3

i.e. 
$$\frac{\mathrm{d}^2 x^{\nu}}{\mathrm{d}\lambda^2} + \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\kappa}}{\mathrm{d}\lambda} \Gamma^{\nu}_{\kappa\mu} = 0 \;\forall\nu$$

 $\nabla_V \vec{V} = 0$  defn: <u>w:geodesic</u>

- more general definition of "straight line" than "shortest distance between two points"
- tensorial definition independent of coordinate basis
- $\bullet$  allows more than one "straight line" between two points a and b in a manifold consider S^2, T^3

i.e.  $\frac{\mathrm{d}^2 x^{\nu}}{\mathrm{d}\lambda^2} + \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\kappa}}{\mathrm{d}\lambda} \Gamma^{\nu}_{\kappa\mu} = 0 \;\forall\nu$ 

cf w:Euler-Lagrange equation

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1$ ,  $d\vec{x}_2$ ,

("1" and "2" are not component indices here)

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1$ ,  $d\vec{x}_2$ ,

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\propto \vec{A}$ 

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\propto \vec{A}$  $\propto \mathrm{d}\vec{x}_1, \mathrm{d}\vec{x}_2$ 

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\Rightarrow$  must exist a tensor **R** that is a function of 3 vectors ("inputs"),

i.e. is a  $\otimes$  of 3 one-forms

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\Rightarrow$  must exist a tensor **R** that is a function of 3 vectors ("inputs"),

i.e. has 3 covariant  $\otimes$  components

$$1\cdot\Lambda \ \Sigma\cdot \widetilde{\mathrm{d}}\phi\cdot\langle
angle\cdot \mathsf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot
abla ec{A}$$
;  $M\cdot
abla_{V}=0\cdot\mathbf{R}\cdot>$  SR+ $\epsilon$ GF

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\Rightarrow$  must exist a tensor **R** that is a function of 3 vectors ("inputs"),

i.e. is a (?,3) tensor

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\Rightarrow$  must exist a tensor R that is a function of 3 vectors and behaves like a vector (when applied to 3 vectors) i.e. a (1,3) tensor

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\Rightarrow$  must exist a tensor **R** that is a function of 3 vectors and behaves like a vector (when applied to 3 vectors)

i.e. a (1,3) tensor

defn: 
$$-\mathbf{R}(\cdot, \vec{A}, \mathrm{d}\vec{x}_1, \mathrm{d}\vec{x}_2) := \mathrm{d}\vec{A}(\cdot)$$

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\Rightarrow$  must exist a tensor **R** that is a function of 3 vectors and behaves like a vector (when applied to 3 vectors)

i.e. a (1,3) tensor

defn: 
$$-\mathbf{R}(\cdot, \vec{A}, \mathrm{d}\vec{x}_1, \mathrm{d}\vec{x}_2) := \mathrm{d}\vec{A}(\cdot)$$

(minus sign convention: MTW1973, Bertschinger) <u>w:Riemann curvature tensor</u>

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\Rightarrow$  must exist a tensor **R** that is a function of 3 vectors and behaves like a vector (when applied to 3 vectors)

i.e. a (1,3) tensor

defn: 
$$\left| -\mathbf{R}(\cdot, \vec{A}, \mathrm{d}\vec{x}_1, \mathrm{d}\vec{x}_2) := \mathrm{d}\vec{A}(\cdot) \right|$$

(minus sign convention: MTW1973, Bertschinger) w:Riemann curvature tensor

$$\mathrm{d}\vec{A}(\cdot) = -R^{\mu}_{\ \nu\alpha\beta}A^{\nu}\,\mathrm{d}x_{1}^{\alpha}\,\mathrm{d}x_{2}^{\beta}\,\vec{e}_{\mu}(\cdot)$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\Rightarrow$  must exist a tensor **R** that is a function of 3 vectors and behaves like a vector (when applied to 3 vectors)

i.e. a (1,3) tensor

defn: 
$$\left| -\mathbf{R}(\cdot, \vec{A}, \mathrm{d}\vec{x}_1, \mathrm{d}\vec{x}_2) \right| := \mathrm{d}\vec{A}(\cdot) \right|$$

(minus sign convention: MTW1973, Bertschinger) w:Riemann curvature tensor

$$d\vec{A}(\cdot) = -R^{\mu}_{\ \nu\alpha\beta}A^{\nu} dx_{1}^{\alpha} dx_{2}^{\beta} \vec{e}_{\mu}(\cdot)$$
  
i.e.  $-\mathbf{R} = R^{\mu}_{\ \nu\alpha\beta}\vec{e}_{\mu}\otimes\tilde{e}^{\nu}\otimes\tilde{e}^{\alpha}\otimes\tilde{e}^{\beta}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR+}\epsilon \mathrm{GR}$ 

parallel transport around "small" parallelogram in two directions  $d\vec{x}_1, d\vec{x}_2,$ 

What is the change in  $\vec{A}$  after parallel transport around the closed loop  $d\vec{x}_1, d\vec{x}_2, -d\vec{x}_1, -d\vec{x}_2$ ?

 $\Rightarrow$  must exist a tensor **R** that is a function of 3 vectors and behaves like a vector (when applied to 3 vectors)

i.e. a (1,3) tensor

defn: 
$$\left| -\mathbf{R}(\cdot, \vec{A}, \mathrm{d}\vec{x}_1, \mathrm{d}\vec{x}_2) := \mathrm{d}\vec{A}(\cdot) \right|$$

(minus sign convention: MTW1973, Bertschinger) w:Riemann curvature tensor

$$d\vec{A}(\cdot) = -R^{\mu}_{\nu\alpha\beta}A^{\nu}dx_{1}^{\alpha}dx_{2}^{\beta}\vec{e}_{\mu}(\cdot)$$
  
i.e.  $-\mathbf{R} = \sum_{\mu}\sum_{\nu}\sum_{\alpha}\sum_{\beta}R^{\mu}_{\nu\alpha\beta}\vec{e}_{\mu}\otimes\tilde{e}^{\nu}\otimes\tilde{e}^{\alpha}\otimes\tilde{e}^{\beta}$ 

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot > \quad \mathrm{SR+}\epsilon \mathrm{GR}$ 

how can **R** be evaluated?

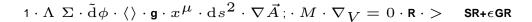
how can **R** be evaluated?

use covariant derivatives of covariant derivatives ...

how can **R** be evaluated?

use covariant derivatives of covariant derivatives ... Ricci identity:

$$(\nabla_{\alpha}\nabla_{\beta} - \nabla_{\beta}\nabla_{\alpha})A^{\mu} = R^{\mu}_{\ \nu\alpha\beta}A^{\nu}$$
 in a coord. basis



how can **R** be evaluated?

use covariant derivatives of covariant derivatives ... Ricci identity:

$$(\nabla_{\alpha}\nabla_{\beta} - \nabla_{\beta}\nabla_{\alpha})A^{\mu} = R^{\mu}_{\ \nu\alpha\beta}A^{\nu}$$
 in a coord. basis

also written with commutator [, ]

 $[\nabla_{\alpha}, \nabla_{\beta}]A^{\mu} = R^{\mu}_{\ \nu\alpha\beta}A^{\nu}$  in a coordinate basis

how can **R** be evaluated?

use covariant derivatives of covariant derivatives ... Ricci identity:

$$(\nabla_{\alpha}\nabla_{\beta} - \nabla_{\beta}\nabla_{\alpha})A^{\mu} = R^{\mu}_{\ \nu\alpha\beta}A^{\nu}$$
 in a coord. basis

also written with commutator [, ]

$$[\nabla_{\alpha}, \nabla_{\beta}]A^{\mu} = R^{\mu}_{\ \nu\alpha\beta}A^{\nu}$$
 in a coordinate basis

using  $\nabla_{\alpha}A^{\mu}$  from above and similar formulae, . . .

$$R^{\mu}_{\ \nu\alpha\beta}A^{\nu} = (\Gamma^{\mu}_{\ \nu\beta,\alpha} - \Gamma^{\mu}_{\ \nu\alpha,\beta} + \Gamma^{\mu}_{\ \kappa\alpha}\Gamma^{\kappa}_{\ \nu\beta} - \Gamma^{\mu}_{\ \kappa\beta}\Gamma^{\kappa}_{\ \nu\alpha})A^{\nu}$$

in a coord. basis

how can **R** be evaluated?

use covariant derivatives of covariant derivatives ... Ricci identity:

$$(\nabla_{\alpha}\nabla_{\beta} - \nabla_{\beta}\nabla_{\alpha})A^{\mu} = R^{\mu}_{\ \nu\alpha\beta}A^{\nu}$$
 in a coord. basis

also written with commutator [, ]

 $[\nabla_{\alpha}, \nabla_{\beta}]A^{\mu} = R^{\mu}_{\ \nu\alpha\beta}A^{\nu}$  in a coordinate basis

using  $\nabla_{\alpha}A^{\mu}$  from above and similar formulae, . . .

$$R^{\mu}_{\ \nu\alpha\beta}A^{\nu} = (\Gamma^{\mu}_{\ \nu\beta,\alpha} - \Gamma^{\mu}_{\ \nu\alpha,\beta} + \Gamma^{\mu}_{\ \kappa\alpha}\Gamma^{\kappa}_{\ \nu\beta} - \Gamma^{\mu}_{\ \kappa\beta}\Gamma^{\kappa}_{\ \nu\alpha})A^{\nu}$$

in a coord. basis

•  $\Gamma^{\mu}_{\nu\beta}$ : sum over first order partial derivatives of  $g_{\nu\kappa}, \ldots$ 

how can **R** be evaluated?

use covariant derivatives of covariant derivatives ... Ricci identity:

$$(\nabla_{\alpha}\nabla_{\beta} - \nabla_{\beta}\nabla_{\alpha})A^{\mu} = R^{\mu}_{\ \nu\alpha\beta}A^{\nu}$$
 in a coord. basis

also written with commutator [, ]

$$[\nabla_{\alpha}, \nabla_{\beta}]A^{\mu} = R^{\mu}_{\ \nu\alpha\beta}A^{\nu}$$
 in a coordinate basis

using  $\nabla_{\alpha}A^{\mu}$  from above and similar formulae, . . .

$$R^{\mu}_{\ \nu\alpha\beta}A^{\nu} = (\Gamma^{\mu}_{\ \nu\beta,\alpha} - \Gamma^{\mu}_{\ \nu\alpha,\beta} + \Gamma^{\mu}_{\ \kappa\alpha}\Gamma^{\kappa}_{\ \nu\beta} - \Gamma^{\mu}_{\ \kappa\beta}\Gamma^{\kappa}_{\ \nu\alpha})A^{\nu}$$

in a coord. basis

- $\Gamma^{\mu}_{\nu\beta}$ : sum over first order partial derivatives of  $g_{\nu\kappa}, \ldots$
- so **R** has second order partial derivatives of  $g_{\nu\kappa}, \ldots$

• first order  $\partial$ :

(pseudo-)manifold locally like  $\mathbb{R}^3$  (M^4),  $\exists$  coords where  $\Gamma^{\mu}_{~\nu\beta}=0$  locally

• first order  $\partial$ :

(pseudo-)manifold locally like  $\mathbb{R}^3$  (M<sup>4</sup>),  $\exists$  coords where  $\Gamma^{\mu}_{\ \nu\beta}=0$  locally

• second order  $\partial$ :

(pseudo-)manifold globally like  $\mathbb{R}^3$  (M<sup>4</sup>)  $\Leftrightarrow R^{\mu}_{\nu\alpha\beta}(\mathbf{x}) = 0 \ \forall \mathbf{x}$ 

... second Bianchi identity:

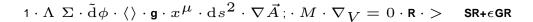
 $\nabla_{\sigma}R^{\mu}_{\ \nu\kappa\lambda} + \nabla_{\kappa}R^{\mu}_{\ \nu\lambda\sigma} + \nabla_{\lambda}R^{\mu}_{\ \nu\sigma\kappa} = 0$ 

... second Bianchi identity:

$$\nabla_{\sigma}R^{\mu}_{\ \nu\kappa\lambda} + \nabla_{\kappa}R^{\mu}_{\ \nu\lambda\sigma} + \nabla_{\lambda}R^{\mu}_{\ \nu\sigma\kappa} = 0$$

<u>w:Ricci curvature</u> tensor (by components):

 $R_{\mu\nu} := R^{\alpha}_{\ \mu\alpha\nu}$ 



... second Bianchi identity:

$$\nabla_{\sigma}R^{\mu}_{\ \nu\kappa\lambda} + \nabla_{\kappa}R^{\mu}_{\ \nu\lambda\sigma} + \nabla_{\lambda}R^{\mu}_{\ \nu\sigma\kappa} = 0$$

<u>w:Ricci curvature</u> tensor (by components):

$$R_{\mu\nu} := R^{\alpha}_{\ \mu\alpha\nu}$$

<u>w:scalar curvature</u>  $\equiv$  Ricci scalar:

 $R := g^{\mu\nu} R_{\mu\nu}$ 

... second Bianchi identity:

$$\nabla_{\sigma}R^{\mu}_{\ \nu\kappa\lambda} + \nabla_{\kappa}R^{\mu}_{\ \nu\lambda\sigma} + \nabla_{\lambda}R^{\mu}_{\ \nu\sigma\kappa} = 0$$

<u>w:Ricci curvature</u> tensor (by components):

$$R_{\mu\nu} := R^{\alpha}_{\ \mu\alpha\nu}$$

<u>w:scalar curvature</u>  $\equiv$  Ricci scalar:

 $R := g^{\mu\nu} R_{\mu\nu}$ 

warning: "R" written coordinate-free may mean:

- an order 4, dimension 64 tensor R;
- an order 2, dimension 16 tensor **R** or *R*; or
- an order 0, dimension 1 tensor  $\equiv$  scalar R
- all three are fields over a spacetime 4-manifold

... second Bianchi identity:

$$\nabla_{\sigma}R^{\mu}_{\ \nu\kappa\lambda} + \nabla_{\kappa}R^{\mu}_{\ \nu\lambda\sigma} + \nabla_{\lambda}R^{\mu}_{\ \nu\sigma\kappa} = 0$$

<u>w:Ricci curvature</u> tensor (by components):

$$R_{\mu\nu} := R^{\alpha}_{\ \mu\alpha\nu}$$

<u>w:scalar curvature</u>  $\equiv$  Ricci scalar:

 $R := g^{\mu\nu} R_{\mu\nu}$ 

w:Proofs involving covariant derivatives

$$\dots \nabla_{\nu} (R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R) = 0$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathsf{SR}_{\mathsf{f}} \epsilon \mathsf{GR}$ 

... second Bianchi identity:

$$\nabla_{\sigma}R^{\mu}_{\ \nu\kappa\lambda} + \nabla_{\kappa}R^{\mu}_{\ \nu\lambda\sigma} + \nabla_{\lambda}R^{\mu}_{\ \nu\sigma\kappa} = 0$$

<u>w:Ricci curvature</u> tensor (by components):

$$R_{\mu\nu} := R^{\alpha}_{\ \mu\alpha\nu}$$

<u>w:scalar curvature</u>  $\equiv$  Ricci scalar:

 $R := g^{\mu\nu} R_{\mu\nu}$ 

w:Proofs involving covariant derivatives

$$\dots \nabla_{\nu} (R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R) = 0$$

defn Einstein tensor (by components):

$$G^{\mu\nu} := R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R$$

$$\Rightarrow \nabla_{\nu} G^{\mu\nu} = 0$$

 $1 \cdot \Lambda \ \Sigma \cdot \tilde{\mathrm{d}} \phi \cdot \langle \rangle \cdot \mathbf{g} \cdot x^{\mu} \cdot \mathrm{d} s^2 \cdot \nabla \vec{A}; \quad M \cdot \nabla_V = 0 \cdot \mathbf{R} \cdot \rangle \quad \mathrm{SR}_{\mathbf{f}} \epsilon \mathrm{GR}$ 

... second Bianchi identity:

$$\nabla_{\sigma}R^{\mu}_{\ \nu\kappa\lambda} + \nabla_{\kappa}R^{\mu}_{\ \nu\lambda\sigma} + \nabla_{\lambda}R^{\mu}_{\ \nu\sigma\kappa} = 0$$

<u>w:Ricci curvature</u> tensor (by components):

$$R_{\mu\nu} := R^{\alpha}_{\ \mu\alpha\nu}$$

<u>w:scalar curvature</u>  $\equiv$  Ricci scalar:

 $R := g^{\mu\nu} R_{\mu\nu}$ 

w:Proofs involving covariant derivatives

$$\dots \nabla_{\nu} (R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R) = 0$$

defn Einstein tensor (by components):

$$G^{\mu\nu} := R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R$$

$$\Rightarrow \nabla_{\nu} G^{\mu\nu} = 0$$

w:List of formulas in Riemannian geometry

$$1\cdot\Lambda\ \Sigma\cdot\tilde{\mathrm{d}}\phi\cdot\langle\rangle\cdot\mathbf{g}\cdot x^{\mu}\cdot\mathrm{d}s^{2}\cdot\nabla\vec{A}\,;\,\cdot\,M\cdot\nabla_{V}=0\cdot\mathbf{R}\cdot\rangle\quad\,\mathrm{SR+}\epsilon\mathrm{GR}$$

w:Stress-energy tensor



w:Stress-energy tensor

- w:Einstein field equations
- $\mathbf{G} = 8\pi \mathbf{T}$  (as tensors)
- $G_{\mu\nu} = 8\pi T_{\mu\nu}$  (by components)

w:Stress-energy tensor

- w:Einstein field equations
- $\mathbf{G} = 8\pi \mathbf{T}$  (as tensors)
- $G_{\mu\nu} = 8\pi T_{\mu\nu}$  (by components)
- w:Equivalence principle

can be thought of as a *consequence* of the model



w:Stress-energy tensor

w:Einstein field equations

 $G = 8\pi T$  (as tensors)

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$  (by components)

w:Equivalence principle

can be thought of as a *consequence* of the model w:Schwarzschild metric



w:Stress-energy tensor

- w:Einstein field equations
- $\mathbf{G} = 8\pi \mathbf{T}$  (as tensors)
- $G_{\mu\nu} = 8\pi T_{\mu\nu}$  (by components)
- w:Equivalence principle

can be thought of as a *consequence* of the model

w:Schwarzschild metric

w:Friedmann-Lemaître-Robertson-Walker metric



w:Stress-energy tensor

- w:Einstein field equations
- $\mathbf{G} = 8\pi \mathbf{T}$  (as tensors)
- $G_{\mu\nu} = 8\pi T_{\mu\nu}$  (by components)

w:Equivalence principle

can be thought of as a *consequence* of the model

w:Schwarzschild metric

w:Friedmann-Lemaître-Robertson-Walker metric

maxima - component tensor packet ctensor; itensor



w:Stress-energy tensor

- w:Einstein field equations
- $\mathbf{G} = 8\pi \mathbf{T}$  (as tensors)
- $G_{\mu\nu} = 8\pi T_{\mu\nu}$  (by components)

w:Equivalence principle

can be thought of as a *consequence* of the model

w:Schwarzschild metric

w:Friedmann-Lemaître-Robertson-Walker metric

maxima - component tensor packet ctensor; itensor w:ADM formalism



w:Stress-energy tensor

- w:Einstein field equations
- $\mathbf{G} = 8\pi \mathbf{T}$  (as tensors)
- $G_{\mu\nu} = 8\pi T_{\mu\nu}$  (by components)

w:Equivalence principle

can be thought of as a *consequence* of the model

w:Schwarzschild metric

w:Friedmann-Lemaître-Robertson-Walker metric

maxima - component tensor packet ctensor; itensor w:ADM formalism

Cactus - http://cactuscode.org