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GR: Intro

1. spacetime = 4D (curved) pseudo-Riemannian
manifold M with metric g

2. 8 spacetime point x 9 4D Minkowski tangent space
T«M at x

= vector space (e.g. 4-momentum vectors)
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1. spacetime = 4D (curved) pseudo-Riemannian
manifold M with metric g

2. 8 spacetime point x 9 4D Minkowski tangent space
T«M at x

= vector space, g ) lengths of vectors in TyM
3. also, 8x 2 M; 9 4D Mink. cotangent space T, M
= dual vector space (think: contour map, gradients)
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GR: Intro L
1. spacetime = 4D (curved) pseudo-Riemannian
manifold M with metric g

2. 8 spacetime point x 9 4D Minkowski tangent space
T«M at x

= vector space, g ) lengths of vectors in TyM
3. also, 8x 2 M; 9 4D Mink. cotangent space T, M
= space of one-forms, g ') *“lengths"

duality in a basis of TyM and a basis of T, M usually
de ned using
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= vector space, g ) lengths of vectors in TyM
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GR: Intro L

1. spacetime = 4D (curved) pseudo-Riemannian
manifold M with metric g

2. 8 spacetime point x 9 4D Minkowski tangent space
T«M at x

= vector space, g ) lengths of vectors in TyM

3. also, 8x 2 M; 9 4D Mink. cotangent space T, M
= space of one-forms, g ') *“lengths"

2+3. vector—one-form duality in a basis:

4. w:Levi-Civita connection ( metric

5. metric ( Einstein eld equations

=
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also: !
sin _
COS
' !
COS sin 1
_ +
SIn COS | 0 |
COS SIn 0
SIn COS 1

=

d hi g x dser*;l\/I ryv =0 rR > SR+ GR O -p2
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GR: coordinate transformations

summary:
B0 = o€+ iO’QI;

— X Yy .
Q/O - yoﬁ( + yO@;
where ,» = element

0

of invcierse of )

x0 X

y© y
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I I
B0 = §03(+ io'@; XO. X.
8= L&+ 8 Pl oo oo y

p= p'a (w:Einstein summation)




GR: coordinate transformations 1

_ X + Y oa- ! !
&= xo& x0 8 N

|0 = §0'3(+ zoﬂl; B! oo yo =

p= p'a (w:Einstein summation)
Einstein summation:

coordinates liker; ;X;y :
not a sum: ;jofg(

repeated up-down coordinate indices like i;j 2 0;1;2g
or ; ;. 210;1;2; 30

sum: }oa = ot zoe), for a 2D manifold, coords x;y

=
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p= p'q (w:Einstein summation)
new basis vectors = sum of inverse old vectors

O-p3
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| |
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p= p'q (w:Einstein summation)
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_ X + Y oa- ! !
Q(O - XO—Q( ;/(0—%/1 XO X
—_— X . —_—
o= yo& T (o€, p! oo 0 =
p= p'q (w:Einstein summation)
new basis vectors = sum of inverse old vectors

new coords of vector p= old coords of same vector p

— p3
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I I
B0 = §03(+ io'@; XO. X '
|0 = §0'3(+ zoﬂl; P! oo yo =

p= p'a (w:Einstein summation)

new basis vectors = sum of inverse old vectors

vector invariance requires contravariance of its coords
“contra" = inverse of change of basis vectors

=
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GR: coordinate transformations 1

I I
B0 = §03(+ io'@; XO. X '
|0 = §0'3(+ zoﬂl; P! oo yo =

p= p'a (w:Einstein summation)

new basis vectors = sum of inverse old vectors

vector invariance requires contravariance of its coords
“contra" = inverse of change of basis vectors

pis invariant. no dependence on coords
pis contravariant: p' change inversely to g

=

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR -p.3
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=scalar eld= (x;y) (x®y9
write o = & =1 (T )y



GR: coord. transf.: 1-forms

=scalar eld= (x;y)  (x%y9
write o = & =1 (T )y
What is the relation between ( xo; :yo)
and ( x; y)?
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depends elther on x and y, or on x%and y°
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=scalar eld= (x;y) (x%y9Y
write o = & =1 (T )y

depends elther on x and y, or on x%and y°
) x0=  xXxot iy Yixo
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=scalar eld= (x;y) (x%y9Y
write o = & =1 (T )y

depends elther on x and y, or on x%and y°
) x0=  xXxot iy Yixo



GR: coord. transf.: 1-forms

=scalar eld= (x;y) (x%y9Y
write o = & =1 (T )y
depends elther on x and y, or on x%and y°
) x0=  xXxot iy Yixo
(x5 y) = ( xXxot yYxo; xXyo+ yYyo)



GR: coord. transf.: 1-forms

=scalar eld= (x;y) (x%y9Y
write o = & =1 (T )y

depends elther on x and y, or on x%and y°
) X0 = x Xx0t oy Yixo |
(x5 o) = ( xi )

Xix0 X;yo
Yix0  Yyo



GR: coord. transf.: 1-forms

=scalar eld = (x;y) (x%yY

write o = & =1 (T )y
depends either on x and y, or on x%and y°

) x0T xXxot oy Yixo !

. _ . X:x0  X;yo
( X0 ;yO) — ( X 1 ;y) 0 Yoo
| ARl
X COS sin x0 .
= . 0 (example: rotation)
y sin COS y
Xxo = %= cos

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O -p4



GR: coord. transf.: 1-forms

=scalar eld= (x;y) (x%y9Y
write o = & =1 (T )y

depends elther on x and y, or on x%and y°
) x0=  xXxot Ly Yo |

X:-y0 X0
(x5 yo)= ( x ) T
| | Y:xo IY;yO
. )
X _ XXO X’yO X
= (general)
y Yxo Yo y°

— p4



GR: coord. transf.: 1-forms

=scalar eld= (x;y) (x%y9Y
write o = & =1 (T )y
depends elther on x and y, or on x%and y°

) x0T xXxot oy Yixo !
X:yx0 X-\0
(x5 )= ( x5 :y) T
| | Y:x0  Yyo
x - o1 X (general)
. 0
y y



GR: coord. transf.: 1-forms

=scalar eld= (x;y) (x®y9
write o = & =1 (T )y

depends elther on x and y, or on x%and y°

) x0T xXxot oy Yixo !
X. 0 X 0
(x5 yo)= ( x ) T
| | Y:x0  Yyo
x _ o1 X (general)
. 0
y y



GR: coord. transf.: 1-forms

=scalar eld= (x;y) (x%y9Y
write o = & =1 (T )y
depends elther on x and y, or on x%and y°

) x0T xXxot oy Yixo !
X. 0 X 0
(x5 yo)= ( x ) T
| | Y:x0  Yyo
x _ o1 X (general)
. 0
y y

d = (@)@ )y = (@ )a(d)y



GR: coord. transf.: 1-forms

=scalar eld= (x;y) (x%y9Y
write o = & =1 (T )y

depends either on x and y, or on x%and y°
) x0T xXpot oy Yo |

o Y= o X:x0  X:y0
( X 1! ,Y) ( A !’y) Yxo Y:yo

;i - 1 );g (general)
d = (@)@ )y = (@ )a(d)y
(@) o=(0) 0

=

d hi g x dserr;l\/IrV:O R > SR+ GR



GR: coord. transf.: 1-forms

basis vectors of different bases: € o = e

same vector: (p) } = 0(18)



GR: coord. transf.: 1-forms L

basis vectors of different bases: € o = e

0

same vector:p = p
same gradient (example 1-form): (@ ) o=(d ) o

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O -p5
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basis vectors of different bases: € o = e

0

same vector: p U= P
same gradient (example 1-form): (@ ) o= (0 ) 0
vector pis invariant. no dependence on coords
pis contravariant. components p change inversely to

how € change; Inverses: matrixf ,gvsf Og
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GR: coord. transf.: 1-forms

basis vectors of different bases: € o = e

0

same vector: p U= P
same gradient (example 1-form): (@ ) o= (0 ) 0
vector pis invariant. no dependence on coords
pis contravariant. components p change inversely to

. . O
how € change; Inverses: matrixf o,gvsf g
1-form @ is invariant: no dependence on coords

d Is covariant: components (@ ) change like € (but
left-multiply)

=
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GR: coord. transf.: 1-forms

basis vectors of different bases: € o = e

0

same vector:p = p
same gradient (example 1-form): (@ ) o=(d ) o

vector pis invariant. no dependence on coords
pis contravariant. components p change inversely to

how € change; Inverses: matrixf ,gvsf Og

1-form @ is invariant: no dependence on coords

d Is covariant: components (@ ) change like € (but
left-multiply)
w:Covariance and contravariance of vectors

=

d hi g x dserr;l\/IrV:O R > SR+ GR
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GR tensors: two different scalar products

vector—1-form duality requirement:
. P
hpied = pQg

=
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GR tensors: two different scalar products

vector—1-form duality requirement:

hp;ei = p q

=
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GR tensors: two different scalar products

vector—1-form duality requirement:

heed = p q = Fe)
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vector—1-form duality requirement:

heed = p q = g&) = €
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GR tensors: two different scalar products

vector—1-form duality requirement:
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GR tensors: two different scalar products
vector—1-form duality requirement:

hpiet = p g = Q&) = €(p)

h; iisa(1,1) tensor

can be called I with components in a coordinate basis

=
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GR tensors: two different scalar products
vector—1-form duality requirement:

hpiet = p g = Q&) = €(p)

h; iisa(1,1) tensor

think: vector! column vector
1-form! row vector

=

1 d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O-ps6
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GR tensors: two different scalar products

vector—1-form duality requirement:
hpiet = p g = Q&) = €(p)

h; iisa(1,1) tensor
! !
. 10 p
(Cbsql) O 1 p]_ -

=
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GR tensors: two different scalar products

vector—1-form duality requirement:
hpiet = p g = Q&) = €(p)

h; iisa(1,1) tensor
! ! !
10 o

(0p; ) 9 1

=
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GR tensors: two different scalar products

vector—1-form duality requirement:
hpiet = p g = Q&) = €(p)

h; iisa(1,1) tensor
! ! !
10 o

(0p; ) 9 1

=

1 d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O-p6
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GR: p;ei;hp;di ; 9

GR tensors: two different scalar products
vector—1-form duality requirement:
hpiet = p g = Q&) = €(p)

h; iisa(1,1) tensor
! ! !

. 10 P _ P’
(Co; ) 0 1 ol = (0p; ) ol P q
h; 1 =(1,1)-tensor = “row-column" matrix | with |

=

d hi g x dserr;l\/IrV:O R > SR+ GR
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GR tensors: two different scalar products

d hi g x dserr;l\/IrV:O R > SR+ GR
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GR tensors: two different scalar products

ordinary linear algebra: column vectors, row vectors,
matrices
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(m; n)-tensor algebra: m column n row m + n-arrays
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GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

e.g.. (0; 2)-tensor: metric g
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GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

using h; i, (1;0)-tensor = vector = function of 1-forms
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GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

using h; i, (0; 1)-tensor = 1-form = function of vectors
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GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

(m; n)-tensor = function of m 1-forms and n vectors

=
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GR tensors: two different scalar products
(m; n)-tensor algebra: m column n row m + n-arrays

(m; n)-tensor = function of m 1-forms and n vectors

V = space of vectors p=p €

=
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GR: p;erhp;6i ; 0 x
GR tensors: two different scalar products
(m; n)-tensor algebra: m column n row m + n-arrays
(m; n)-tensor = function of m 1-forms and n vectors

V = space of vectors p=p €

V = dual space of 1-forms = q e

=
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GR tensors: two different scalar products
(m; n)-tensor algebra: m column n row m + n-arrays
(m; n)-tensor = function of m 1-forms and n vectors
V = space of vectors p=p €

V = dual space of 1-forms = q e

V V =spaceof(0;2)-tensorsT=T e e (e.g.
metric) w:tensor product

=
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GR tensors: two different scalar products
(m; n)-tensor algebra: m column n row m + n-arrays
(m; n)-tensor = function of m 1-forms and n vectors
V = space of vectors p=p €

V = dual space of 1-forms = q e

V V =spaceof(0;2)-tensorsT=T e e (e.g.
metric) w:tensor product

loosely speaking, the second means “function of two
vectors" (or 1-forms, or a vector and a 1-form) in that
particular left-to-right order

=
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GR tensors: two different scalar products
(m; n)-tensor algebra: m column n row m + n-arrays
(m; n)-tensor = function of m 1-forms and n vectors
V = space of vectors p=p €

V = dual space of 1-forms = q e

V V =spaceof(0;2)-tensorsT=T e e (e.g.
metric) w:tensor product

order of V V =2

=

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O -p7
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GR tensors: two different scalar products
(m; n)-tensor algebra: m column n row m + n-arrays
(m; n)-tensor = function of m 1-forms and n vectors
V = space of vectors p=p €

V = dual space of 1-forms = q e

V V =spaceof(0;2)-tensorsT=T e e (e.g.
metric) w:tensor product

order of V V =2

warning: the “rank" of tensors has two different
meanings: w:Tensor_(intrinsic_de nition)#Tensor_rank

=

d hi g x dser*;l\/I ryv =0 rR > SR+ GR O -p7




GR: p;&;hp;di ;
GR tensors: two different scalar products
(m; n)-tensor algebra: m column n row m + n-arrays
(m; n)-tensor = function of m 1-forms and n vectors

V = space of vectors p=p €

V = dual space of 1-forms = q e

V V =spaceof(0;2)-tensorsT=T e e (e.g.

metric) w:tensor product

orderofV. V =2
dimensionofV  V =16 (for V = spacetime)

=

d hi g x dserr;l\/IrV:O R > SR+ GR

— p7
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V V =spaceof(0;2)-tensorsT=T e e, where
= w:tensor product

=
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V V =spaceof(0;2)-tensorsT=T e e, where
= w:tensor product

e.g.. metric g = function of two vectors

=

d hi g x dser*;l\/I ryv =0 rR > SR+ GR O-ps8
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V V =spaceof(0;2)-tensorsT=T e e, where
= w:tensor product

e.g.. metric g = function of two vectors
= “row-row" matrix

=
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V V =spaceof(0;2)-tensorsT=T e e, where
= w:tensor product

e.g.. metric g = function of two vectors
= “row-row" matrix

e.g. Euclideangon R%. ginr; coordsis

=

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O-ps8



GR: g L
V V =spaceof(0;2)-tensorsT=T e e, where
= w:tensor product

e.g.. metric g = function of two vectors
= “row-row" matrix

e.g. Euclideangon R%. ginr; coordsis
|
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GR: metric tensor g, g *, bases

g can be applied to basis vectors €

we can de ne components (used earlier): g :=g(e;e)

) g=9g e e
eg.g=or€¢ €+g e
inverse: g 1=g © e,
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B=g AB =g AB
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EA=F(A €)

=€ @A €)

e [(@A )e + A @e] by product rule and linearity
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EA=F(A €)
=€ @A €)
= @A e € + A e @e

give a name to the second part: it must be a linear
combination of basis vectors €
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GR: gradient of a vector. r A L

EA=F(A €)

=€ @A €)

— @A e ee+Ae @e

de ne € = @< Christoffel symbols of second kind
(symmetric defn)

SOEA=@A e e+Ae €

= @A e €+ A e €

Ig,ince namePof summalii:pn iIndex Is arbitrary, e.g.

X 2 = X 2 = X 2

=
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EA=F(A €)
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de ne € = @< Christoffel symbols of second kind
(symmetric defn)
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GR: gradient of a vector. r A L

EA=F(A €)

=€ @A €)

— @A e ee+Ae @e

de ne € = @< Christoffel symbols of second kind
(symmetric defn)

SOEA=@A e e+Aece €

= @A e €+ A e €
=(@A + A )e €

r A =A. =@A +A

w:covariant derivative of vector

=



GR: gradient of a vector. r A L

EA=F(A €)

=€ @A €)

— @A e ee+Ae @e

de ne € = @< Christoffel symbols of second kind
(symmetric defn)

SOEA=@A e e+Aece €

= @A e €+ A e €
=(@A + A )e €

r A ::A; ::A; + A

w:covariant derivative of vector

=



GR: € and L

mathematically deeper: €, usually written justasr , is
the w:Levi-Civita connection
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(m;n+1)-tensor eld
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scalar eld gives a (0;1)-tensor eld = one-form eld =
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the w:Levi-Civita connection
warning: are NOT the components of a tensor

€ applied to a (m; n)-tensor eld on a manifold gives an
(m;n+1)-tensor eld

so far we showed how € applied to a (0; 0)-tensor eld =
scalar eld gives a (0;1)-tensor eld = one-form eld =
I e =@ e

and € on a (1;0)-tensor eld = vector eld A gives a

(1; 1)-tensor with componentsr A = @A + A
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mathematically deeper: €, usually written justasr , is
the w:Levi-Civita connection
warning: are NOT the components of a tensor

€ applied to a (m; n)-tensor eld on a manifold gives an
(m;n+1)-tensor eld

so far we showed how € applied to a (0; 0)-tensor eld =
scalar eld gives a (0;1)-tensor eld = one-form eld =
I e =@ e

and € on a (1;0)-tensor eld = vector eld A gives a
(1; 1)-tensor with componentsr A = @A + A

tensors: € =F e
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€ applied to a (m; n)-tensor eld on a manifold gives an
(m;n+1)-tensor eld

so far we showed how € applied to a (0; 0)-tensor eld =
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GR: € and L

mathematically deeper: €, usually written justasr , is
the w:Levi-Civita connection
warning: are NOT the components of a tensor

€ applied to a (m; n)-tensor eld on a manifold gives an
(m;n+1)-tensor eld

so far we showed how € applied to a (0; 0)-tensor eld =
scalar eld gives a (0;1)-tensor eld = one-form eld =
I e =@ e

and € on a (1;0)-tensor eld = vector eld A gives a
(1; 1)-tensor with componentsr A = @A + A

tensors: € =€ e, A= @A + A e €
not components of tensor:

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR -p.15
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how does a one-form change with position? €A =7



GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

d hi g x dserr;l\/IrV:O R > SR+ GR O -p.16



GR: gradient of one-form €A L
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relation between vectors and one-forms: he ;e i =
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GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?

relation between vectors and one-forms: he ;e i =
@ =0 (obviously)
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GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?

relation between vectors and one-forms: he ;e i =

0=@ =@ (e;ei)
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GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?

relation between vectors and one-forms: he ;e i =
0=@ =@(he;ei)
carbwe usg, the product rule with this scalar product?

@ AB =72
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GR: gradient of one-form €A

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?

relation between vectors and one-forms: he ;e i =
0=@ =@(he;ei)
carbwe usg, the product rule with this scalar product?

@ A B = @(A B )insome coordinate basis
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GR: gradient of one-form €A

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?

relation between vectors and one-forms: he ;e i =
0=@ =@(he;ei)

carbwe usg, the product rule with this scalar product?
@ AB =@(AB)

=(@A )B + A (@B ) by product rule on functions

=

d hi g x dserr;l\/IrV:O R > SR+ GR

1
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GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?
relation between vectors and one-forms: he ;e i =
0=@ =@ (e;ei)
carbwe usg, the product rule with this scalar product?
@ AB =@(AB)
= A)B + A B
%@ ) TS (@ %
= @A'B + A @B since
@A = (@A, @A1; @A2; @A3)
-

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O -p.16



GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?
relation between vectors and one-forms: he ;e i =
O=@ =@(he:ei

( )D E D E D E
productruleholds: @ A:B = @AB + A @B
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GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?
relation between vectors and one-forms: he ;e i =
O=@ =@(he:ei

( )D E D E D E
productruleholds: @ A:B = @AB + A @B
so0=h@e:ei1+ he:@el

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O -p.16



GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?
relation between vectors and one-forms: he ;e i =
O=@ =@(he:ei
( )D E D E D E
productruleholds: @ A:B = @AB + A @B
so 0= e.el+he:@eil
@ D @ E

= F e + e; =€

=

1 d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O -p.16



GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?
relation between vectors and one-forms: he ;e i =
O=@ =@(he:ei

( )D E D E D E
productruleholds: @ A:B = @AB + A @B

so0=h@e:ei1+ he:@el
=F he:eil+ he ;e

=
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GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?
relation between vectors and one-forms: he ;e i =

0=@ = @(m;el)D

E D E D E
productruleholds: @ A:B = @AB + A @B
so0=hoe ;ei+ he;,@el
=F + since he ;ei =

=
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GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?

relation between vectors and one-forms: he ;e i =
0O=@ = @(he;ei)D

E D E D E
productruleholds: @ A:B = @AB + A @B
so0=h@e:ei1+ he:@el
= F + sincehe :ei =
hence, @e =: F e = e
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GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?
relation between vectors and one-forms: he ;e i =

0=@ = @(m;el)D

E D E D E
productruleholds: @ A:B = @AB + A @B
so0=h@e:ei1+ he:@el
= F + sincehe :ei =
nence, @e =: F e = e
r A = @A + A r A =@A A
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GR: gradient of one-form €A L

evaluating € A as we did € A shows that we again need
@e = F e for some coef cients F

how can we relate toF ?
relation between vectors and one-forms: he ;e i =

0=@ = @(m;el)D

E D E D E
productruleholds: @ A:B = @AB + A @B
so0=h@e:ei1+ he:@el
= F + sincehe :ei =
nence, @e =: F e = e
A. =A. +A , A. = A. A

i

1 d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR —p.16
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similarly, we can write the (0; 3)-tensor
€g=(r g )e e e

givingr g = @g g g
also€g 1=(r g J)e € =
andr ¢ =@g + 9 + g
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GR: smooth manifold and € g L

similarly, we can write the (0; 3)-tensor
€g=(r g )e e e

givingr g = @g g g
also€g 1=(r g J)e € =
andr g =@g + g + ¢

Do we know anything interesting about € g for the
manifolds of interest to GR?
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GR: smooth manifold and € g L

similarly, we can write the (0; 3)-tensor
€g=(r g )e e e

givingr g = @g g g
also€g 1=(r g J)e € =
andr g =@g + g + ¢

Do we know anything interesting about € g for the
manifolds of interest to GR?

First, we need a rough description of the manifolds we
need for GR.

=

1 d hi g x dserr;M ryv =0 rR > SR+ GR -p.17



GR: smooth manifold and € g L

topological manifold M
w:Manifold#Mathematical de nition

only topological properties needed
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topological manifold M
w:Manifold#Mathematical de nition

only topological properties needed
no differentiability, no metric needed
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GR: smooth manifold and € g

topological manifold M

w:Manifold#Mathematical de nition

only topological properties needed
next: relation with R* (or M%)

w:Manifold

chart := function
from part of pseudo-4-
manifold M to part of M*
(Minkowski)

atlas := set of overlap-
ping charts that cover M

1

-p.18



GR: smooth manifold and € g L

If every transition chart ;= Lin an atlas for M is

differentiable on R* (or M%), then M is a
w:differentiable 4-(pseudo-)manifold
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GR: smooth manifold and € g L

If every transition chart ;= Lin an atlas for M is

differentiable on R* (or M%), then M is a
w:differentiable 4-(pseudo-)manifold

W.

projections (left-to-right) 1, 2, 3from S?to R?

=
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GR: smooth manifold and € g L

If every transition chart ;= Lin an atlas for M is

differentiable on R* (or M%), then M is a
w:differentiable 4-(pseudo-)manifold

W.

1 is not differentiable, so 1 ! is not differentiable

=

1 d hi g x dser*;l\/I ryv =0 rR > SR+ GR O -p.19



GR: smooth manifold and € g L

If every transition chart ;= Lin an atlas for M is

differentiable on R* (or M%), then M is a
w:differentiable 4-(pseudo-)manifold

W.

atlas not enough to show that S? = differentiable
Lz-manifold

1 d hi g x dser*;l\/I ryv =0 rR > SR+ GR -p.19



GR: smooth manifold and € g L

If every transition chart := Lin an atlas for M is

differentiable on R* (or M%), then M is a
w:differentiable 4-(pseudo-)manifold

d hi g x dser*;l\/I ryv =0 rR > SR+ GR O -p.20



GR: smooth manifold and € g L

If every transition chart := Lin an atlas for M is

differentiable on R* (or M%), then M is a
w:differentiable 4-(pseudo-)manifold

If 8k 1, 9k-th derivatives, then M Is a smooth
4-(pseudo-)manifold
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GR: smooth manifold and € g

If every transition chart := Lin an atlas for M is

differentiable on R* (or M%), then M is a
w:differentiable 4-(pseudo-)manifold

If 8k 1, 9k-th derivatives, then M Is a smooth
4-(pseudo-)manifold

If a (pseudo-)w:Riemannian metric g can be added to M,
then (M;g) is a (pseudo-)Riemannian 4-manifold

1
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GR: smooth manifold and € g

If every transition chart := Lin an atlas for M is

differentiable on R* (or M%), then M is a
w:differentiable 4-(pseudo-)manifold

If 8k 1, 9k-th derivatives, then M Is a smooth
4-(pseudo-)manifold

If a (pseudo-)w:Riemannian metric g can be added to M,

then (M;g) is a (pseudo-)Riemannian 4-manifold
If g has signature (1;n 1) (i.e. ( ;+;+;+) or
(+; ; ; ),etc.), then (M;g) is a Lorentzian n-manifold

=

d hi g x dserr;l\/IrV:O R > SR+ GR

1

- p.20
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topological manifolds
differentiable (pseudo-)manifolds
smooth (pseudo-)manifolds

a hi g X dserr;l\/IrV:O R > SR+ GR O-p21



GR: smooth manifold and € g L

topological manifolds
differentiable (pseudo-)manifolds
smooth (pseudo-)manifolds
(pseudo-)Riemannian manifolds




GR: smooth manifold and € g L

topological manifolds
differentiable (pseudo-)manifolds
smooth (pseudo-)manifolds
(pseudo-)Riemannian manifolds
Lorentzian manifolds




GR: smooth manifold and € g L

topological manifolds
differentiable (pseudo-)manifolds
smooth (pseudo-)manifolds
(pseudo-)Riemannian manifolds

Lorentzian manifolds
Lorentzian 4-manifolds




GR: smooth manifold and € g L

topological manifolds
differentiable (pseudo-)manifolds
smooth (pseudo-)manifolds
(pseudo-)Riemannian manifolds

Lorentzian manifolds
Lorentzian 4-manifolds

GR: assume that spacetime is a Lorentzian 4-manifold

=

1 d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR -p.21



GR: smooth manifold and € g L

from above:
r g = @g g g



GR: smooth manifold and € g L
from above:
r g = @g 9 9
In the tangent space at x; 9 coordinate basis € with
g = =dag( LL11)=g¢g
) @3 =@

a hi g X dserr;l\/IrV:O R > SR+ GR O -p.22



GR: smooth manifold and € g L
from above:
r g = @g 9 9
In the tangent space at x; 9 coordinate basis € with
g = =dag( LL11)=g¢g
) @Qg =@ =0
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GR: smooth manifold and € g L

from above:

r g = @g 9 9

In the tangent space at x; 9 coordinate basis € with
g = =dag( LLL1l)=g

) @g =@ =0

also, e =€ = @€



GR: smooth manifold and € g L

from above:

r g = @g 9 9

In the tangent space at x; 9 coordinate basis € with
g = =dag( LLL1l)=g

) @g =@ =0

also, e =€ = @€

but in a Cartesian or Minkowski (vector) space, the basis
vectors always point in the same direction and their
lengths are xed
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GR: smooth manifold and € g L

from above:

r g = @g 9 9

In the tangent space at x; 9 coordinate basis € with
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also, e =€ = @€
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GR: smooth manifold and € g L

from above:

r g = @g 9 9

In the tangent space at x; 9 coordinate basis € with
g = =dag( LLL1)=g

) @g =@ =0

also, e =€ = @€

sor g =0



GR: smooth manifold and € g L

from above:

r g = @g 9 9

In the tangent space at x; 9 coordinate basis € with
g = =dag( LLL1l)=g

) @g =@ =0

also, e =€ = @€

sor g =0

so €g = 0 (also €g ! =0) on the tangent space, since if
true in one coord system, also true in others

=
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GR: smooth manifold and € g L

from above:

r g = @g 9 9

In the tangent space at x; 9 coordinate basis € with
g = =dag( LLL1)=g

) @g =@ =0

also, e =€ = @€

sor g =0

so€g= 0= €g !ontangent space
...g=0=1©g tonM

=
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GR: smooth manifold and € g L

from above:

r g = @g 9 9

In the tangent space at x; 9 coordinate basis € with
g = =dag( LLL1)=g

) @g =@ =0

also, e =€ = @€

sor g =0

so€g= 0= €g !ontangent space
...g=0=1©g tonM
= In any coord. basis (symmetric defn)

=
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GR: smooth manifold and € g L

from above:

r g = @g 9 9

In the tangent space at x; 9 coordinate basis € with
g = =dag( LLL1l)=g

) @g =@ =0

also, e =€ = @€

sor g =0

so€g= 0= €g !ontangent space
...g=0=1©g tonM
= In any coord. basis (symmetric defn)

39 (@g + @g @g ) In a coordinate basis

=

1 d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR -p.22



GR: directional deriv.: < €AV > F

€ ; EA; €A gave how the elds , A, or A change
around the manifold in general
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GR: directional deriv.: < €AV > F

€ ; EA; €A gave how the elds , A, or A change
around the manifold in genera

how about moving along a speci c curve?
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GR: directional deriv.: < €AV > F

€ ; EA; €A gave how the elds , A, or A change
around the manifold in genera

how about moving along a speci c curve?

curve on manifold parametrised by a continuously
changing real parameter : x( )
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GR: directional deriv.: < €AV > F

€ ; EA; €A gave how the elds , A, or A change
around the manifold in genera

how about moving along a speci c curve?

curve on manifold parametrised by a continuously
changing real parameter :x( ) = fx ( )gina
coordinate basis

can de ne tangent vectors along the curve, i.e.
V()= §

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O -p.23



GR: directional deriv.: < €AV > F

€ ; EA; €A gave how the elds , A, or A change
around the manifold in genera

how about moving along a speci c curve?

curve on manifold parametrised by a continuously
changing real parameter :x( ) = fx ( )gina
coordinate basis

can de ne tangent vectors along the curve, i.e.
— dx _— dx
V()= = 5-¢
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GR: directional deriv.: < €AV > F

€ ; EA; €A gave how the elds , A, or A change
around the manifold in genera

how about moving along a speci c curve?

curve on manifold parametrised by a continuously
changing real parameter :x( ) = fx ( )gina
coordinate basis

can de ne tangent vectors along the curve, Ii.e.
— dx _— dx
V()= = 5-¢

warning: fx ( )gatsome on the manifold is a point on
the manifold but NOT a vector; while dx — in the tangent
space — IS a vector

=

1 d hi g x dser*;l\/I ryv =0 rR > SR+ GR -p.23



GR: directional deriv.: < €AV > F

using V( ) := 9% project covariant derivative to curve
using scalar product h; |
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GR: directional deriv.: < €AV > F

using vV( ) := g—* project covariant derivative to curve
using scalar péoducte; i

S—rv::ﬁ;v

=V @
r v written by Bertschinger without~or~because r y T of
tensor T has the same tensor orderas T

=
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using vV( ) := g—* project covariant derivative to curve
using scalar product h; |

D E
S— r v = €:V

=V @

for a vector eld:
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S— r v = €:V
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using vV( ) := g—* project covariant derivative to curve
using scalar product h; |
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GR: directional deriv.: < €AV > F

using vV( ) := g—* project covariant derivative to curve
using scalar péoducte; i

g—rv:: € Vv
=V

@ D E
B r VA= BAV
=V (r A)e

=V (A. +A )e
SO In a coord basis,

rvA= 98+ V A €

=

1 d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR —p.24
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tangents V = g—* where A “locally does not change
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GR: directional deriv.: < €AV > F

special (interesting) case: vector eld A and curve with

tangents V = g—* where A “locally does not change

direction”
lLe.r vA =0
r vA =0 defn: parallel transport of A along path x( )

where V := ¢

d hi g x dser*;l\/I ryv =0 rR > SR+ GR —p.25
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example:

on S?, parallel transport of
A around a closed loop

does not conserve A's di-
rection
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tensorial de nition — independent of coordinate basis
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a and b in a manifold — consider S?, T3
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r vV =0 |defn: w:geodesic

more general de nition of “straight line" than “shortest
distance between two points"

tensorial de nition — independent of coordinate basis
allows more than one “straight line" between two points
a and b in a manifold — consider S?, T3

e, T+ VvV =0 8
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GR: directional deriv.: < €AV > F

r vV =0 |defn: w:geodesic

more general de nition of “straight line" than “shortest
distance between two points"

tensorial de nition — independent of coordinate basis
allows more than one “straight line" between two points
a and b in a manifold — consider S?, T3

d2x dx dx _

cf w.EuIer-Lagrange equation

=

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR -p.27



GR: parallel transp. @closed curve

parallel transport around “small" parallelogram in two
directions dxy; dxo;

(“1" and “2" are not component indices here)

d hi g x dser*;l\/I ryv =0 rR > SR+ GR O -p2
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parallel transport around “small" parallelogram in two
directions dx;; dxo;

What is the change in A after parallel transport around
the closed loop dxq; dxo; dxq; dxp ?

) must exist a tensor R that is a function of 3 vectors
(“Inputs"),

l.e. iIsa of 3 one-forms
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parallel transport around “small" parallelogram in two
directions dx;; dxo;

What is the change in A after parallel transport around
the closed loop dxq; dxo; dxq; dxp ?

) must exist a tensor R that is a function of 3 vectors
(“Inputs"),

l.e. has 3 covariant components
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directions dx;; dxo;
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) must exist a tensor R that is a function of 3 vectors
(“Inputs"),
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parallel transport around “small" parallelogram in two
directions dx;; dxo;

What is the change in A after parallel transport around
the closed loop dxq; dxo; dxq; dxp ?

) must exist a tensor R that is a function of 3 vectors
and behaves like a vector (when applied to 3 vectors)

l.e. a (1,;3) tensor
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GR: parallel transp. @closed curve

parallel transport around “small" parallelogram in two

directions d¥;; dx:

What is the change in A after parallel transport around

the closed loop dxq; dxo;  dxq;

l.e. a (1,;3) tensor

defn:

d'Xz ?
) must exist a tensor R that is a function of 3 vectors
and behaves like a vector (when applied to 3 vectors)

R(; A, dxy;dx) .=dA()

O -p.28



GR: parallel transp. @closed curve

parallel transport around “small" parallelogram in two
directions dx;; dxo;

What is the change in A after parallel transport around
the closed loop dxq; dxo; dxq; dxp ?

) must exist a tensor R that is a function of 3 vectors
and behaves like a vector (when applied to 3 vectors)

l.e. a (1,;3) tensor
defn:| R(;A;dxq;dx) =dA()

(minus sign convention: MTW1973, Bertschinger)
w:Riemann curvature tensor

=

1 d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR O -p.28
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parallel transport around “small" parallelogram in two
directions dx;; dxo;

What is the change in A after parallel transport around
the closed loop dxq; dxo; dxq; dxp ?

) must exist a tensor R that is a function of 3 vectors
and behaves like a vector (when applied to 3 vectors)

l.e. a (1,;3) tensor
defn:| R(;A;dxq;dx) =dA()

(minus sign convention: MTW1973, Bertschinger)
w:Riemann curvature tensor

dA()= R A dx,dx,e ()
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GR: parallel transp. @closed curve

parallel transport around “small" parallelogram in two
directions dx;; dxo;

What is the change in A after parallel transport around
the closed loop dxq; dxo; dxq; dxp ?

) must exist a tensor R that is a function of 3 vectors
and behaves like a vector (when applied to 3 vectors)

l.e. a (1,;3) tensor
defn:| R(;A;dxq;dx) =dA()

(minus sign convention: MTW1973, Bertschinger)
w:Riemann curvature tensor

dA()= R A dx,dx,e ()

.e. R=R e e e e

=
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GR: parallel transp. @closed curve

parallel transport around “small" parallelogram in two
directions dx;; dxo;

What is the change in A after parallel transport around
the closed loop dxq; dxo; dxq; dxp ?

) must exist a tensor R that is a function of 3 vectors
and behaves like a vector (when applied to 3 vectors)

l.e. a (1,;3) tensor
defn:| R(;A;dxq;dx) =dA()

(minus sign convention: MTW1973, Bertschinger)
w:Riemann curvature tensor
dA()= R A dxydx,e()

. P P P P
.e. R = R e e e e

=

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR —p.28
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use covariant derivatives of covariant derivatives ...
Ricci identity:
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also written with commutator [; ]
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usingr A from above and similar formulae, ...
R A =( . .t )A
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how can R be evaluated?
use covariant derivatives of covariant derivatives ...
Ricci identity:

(r r r r A =R A inacoord. basis

also written with commutator [; ]
r ;r JA =R A Inacoordinate basis

usingr A from above and similar formulae, ...
R A =( . .+ )A

In a coord. basis
. sum over rst order partial derivatives of g ;:::
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GR: Riemann tensor

how can R be evaluated?

use covariant derivatives of covariant derivatives ...

Ricci identity:

(r r r r A =R A inacoord. basis

also written with commutator [; ]
r ;r JA =R A Inacoordinate basis

usingr A from above and similar formulae, ...

R A =( . o+ )A

In a coord. basis

. sum over rst order partial derivatives of g

SO R has second order partial derivatives of g

d hi g x dserr;l\/IrV:O R > SR+ GR

-p.29
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rst order @

(pseudo-)manifold locally like R3 (M%), 9 coords where
= 0 locally
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GR: Riemann tensor L
rst order @

(pseudo-)manifold locally like R3 (M%), 9 coords where
= 0 locally

second order @
(pseudo-)manifold globally like R3 (M%), R  (x)=0 8x

d hi g x dszrﬁr;l\/l ryv =0 rR > SR+ GR —-p.30
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... second Bianchi identity:
r R +r R +r R =0

w:Ricci curvature tensor (by components):
R =R

w:scalar curvature  Ricci scalar:

R =g R
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GR: Bianchi, Riccl, Einstein L
... second Bianchi identity:
r R +r R +r R =0
w:Ricci curvature tensor (by components):
R =R
w:scalar curvature Ricci scalar:
R =g R
warning: “R" written coordinate-free may mean:
an order 4, dimension 64 tensor R;
an order 2, dimension 16 tensor R or R; or
an order 0, dimension 1 tensor scalar R
all three are elds over a spacetime 4-manifold

=
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GR: Bianchi, Ricci, Einstein
... second Bianchi identity:
r R +r R +r R =0

w:Ricci curvature tensor (by components):
R =R

w:scalar curvature  Ricci scalar:

R =g R

w:Proofs involving covariant derivatives

.r (R 29 R)=0

=
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GR: Bianchi, Riccl, Einstein

... second Bianchi identity:
r R +r R +r R =0

w:Ricci curvature tensor (by components):
R =R

w:scalar curvature Ricci scalar:

R =g R

w:Proofs involving covariant derivatives
.r (R 29 R)=0

defn Einstein tensor (by components):

G =R 39 R
)r G =0

=
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GR: Bianchi, Riccl, Einstein L

... second Bianchi identity:
r R +r R +r R =0

w:Ricci curvature tensor (by components):
R =R

w:scalar curvature Ricci scalar:

R =g R

w:Proofs involving covariant derivatives
.r (R 29 R)=0

defn Einstein tensor (by components):

G =R 39 R

)r G =0

w:List of formulas in Riemannian geometry

=

d hi g x dser*;l\/I ryv =0 rR > SR+ GR -p.31
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w:Stress-energy tensor

w:Einstein eld equations

G =8 T (astensors)
G =8T (by components)
w:Equivalence principle

can be thought of as a consequence of the model
w:Schwarzschild metric

w:Friedmann-Lemaitre-Robertson-Walker metric
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G =8T (by components)
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w:Schwarzschild metric
w:Friedmann-Lemaitre-Robertson-Walker metric
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GR: other basic topics L

w:Stress-energy tensor

w:Einstein eld equations

G =8 T (astensors)
G =8T (by components)
w:Equivalence principle

can be thought of as a consequence of the model
w:Schwarzschild metric
w:Friedmann-Lemaitre-Robertson-Walker metric
maxima - component tensor packet ctensor; itensor
w:ADM formalism

Cactus - http://cactuscode.org

=

d hi g x dser*;l\/I ryv =0 rR > SR+ GR -p.32




