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Einstein summation:

� coordinates like r; �; x; y :

not a sum: � x
y0 ~ex

� repeated up-down coordinate indices like i; j 2 f 0; 1; 2g
or �; �; ; �; �; � 2 f 0; 1; 2; 3g:

sum: � i
j 0 ~ei := � x

y0 ~ex + � y
y0 ~ey for a 2D manifold, coords x; y
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new basis vectors = sum of inverse � � old vectors

vector invariance requires contravariance of its coords
“contra" = inverse of change of basis vectors

� ~p is invariant: no dependence on coords
� ~p is contravariant: pi change inversely to ~ei
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(example: rotation)

x;x0 = @x
@x0 = cos�

x;y0 = @x
@y0 = � sin� . . .
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) (� ;x0; � ;y0) = ( � ;x ; � ;y) � � 1
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GR: coord. transf.: 1-forms
� = scalar �eld = � (x; y) � � (x0; y0)

write � ;x := @�
@x=: ( ~d� )x

� depends either on x and y, or on x0and y0

) � ;x0 = � ;x x;x0 + � ;y y;x0

(� ;x0; � ;y0) = ( � ;x ; � ;y)

 
x;x0 x;y0

y;x0 y;y0

!

 
x
y

!

= � � 1

 
x0

y0

!

(general)

~d� =
�
(~d� )x0; (~d� )y0

�
=

�
(~d� )x ; (~d� )y

�
� � 1
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GR: coord. transf.: 1-forms
� = scalar �eld = � (x; y) � � (x0; y0)

write � ;x := @�
@x=: ( ~d� )x

� depends either on x and y, or on x0and y0

) � ;x0 = � ;x x;x0 + � ;y y;x0

(� ;x0; � ;y0) = ( � ;x ; � ;y)

 
x;x0 x;y0

y;x0 y;y0

!

 
x
y

!

= � � 1

 
x0

y0

!

(general)

~d� =
�
(~d� )x0; (~d� )y0

�
=

�
(~d� )x ; (~d� )y

�
� � 1

(~d� )� 0 = ( ~d� )� � �
� 0
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GR: coord. transf.: 1-forms
basis vectors of different bases: ~e� 0 = � �

� 0~e�

same vector: (~p)� 0
= � � 0

� (~p)�
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GR: coord. transf.: 1-forms
basis vectors of different bases: ~e� 0 = � �

� 0~e�

same vector: p� 0
= � � 0

� p�

same gradient (example 1-form): (~d� )� 0 = ( ~d� )� � �
� 0
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GR: coord. transf.: 1-forms
basis vectors of different bases: ~e� 0 = � �

� 0~e�

same vector: p� 0
= � � 0

� p�

same gradient (example 1-form): (~d� )� 0 = ( ~d� )� � �
� 0

� vector ~p is invariant: no dependence on coords
� ~p is contravariant: components p� change inversely to

how ~e� change; inverses: matrix f � �
� 0g vs f � � 0

� g
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GR: coord. transf.: 1-forms
basis vectors of different bases: ~e� 0 = � �

� 0~e�

same vector: p� 0
= � � 0

� p�

same gradient (example 1-form): (~d� )� 0 = ( ~d� )� � �
� 0

� vector ~p is invariant: no dependence on coords
� ~p is contravariant: components p� change inversely to

how ~e� change; inverses: matrix f � �
� 0g vs f � � 0

� g

� 1-form ~d� is invariant: no dependence on coords
� ~d� is covariant: components (~d� )� change like ~e� (but
left-multiply)
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GR: coord. transf.: 1-forms
basis vectors of different bases: ~e� 0 = � �

� 0~e�

same vector: p� 0
= � � 0

� p�

same gradient (example 1-form): (~d� )� 0 = ( ~d� )� � �
� 0

� vector ~p is invariant: no dependence on coords
� ~p is contravariant: components p� change inversely to

how ~e� change; inverses: matrix f � �
� 0g vs f � � 0

� g

� 1-form ~d� is invariant: no dependence on coords
� ~d� is covariant: components (~d� )� change like ~e� (but
left-multiply)
w:Covariance and contravariance of vectors
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi =
P

� p� q�
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi = p� q�
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi = p� q� = ~p(~q)
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi = p� q� = ~p(~q) = ~q(~p)
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi = p� q� = ~p(~q) = ~q(~p)

h; i is a (1,1) tensor
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi = p� q� = ~p(~q) = ~q(~p)

h; i is a (1,1) tensor

can be called I with components � �
� in a coordinate basis
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi = p� q� = ~p(~q) = ~q(~p)

h; i is a (1,1) tensor

think: vector ! column vector
1-form ! row vector
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi = p� q� = ~p(~q) = ~q(~p)

h; i is a (1,1) tensor

(q0; q1)

 
1 0
0 1

!  
p0

p1

!

=
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi = p� q� = ~p(~q) = ~q(~p)

h; i is a (1,1) tensor

(q0; q1)

 
1 0
0 1

!  
p0

p1

!

= ( q0; q1)

 
p0

p1

!
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi = p� q� = ~p(~q) = ~q(~p)

h; i is a (1,1) tensor

(q0; q1)

 
1 0
0 1

!  
p0

p1

!

= ( q0; q1)

 
p0

p1

!

= p� q�
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GR: ~p; ~q;h~p; ~qi ; g

GR tensors: two different scalar products

vector–1-form duality requirement:

h~p;~qi = p� q� = ~p(~q) = ~q(~p)

h; i is a (1,1) tensor

(q0; q1)

 
1 0
0 1

!  
p0

p1

!

= ( q0; q1)

 
p0

p1

!

= p� q�

h; i = (1,1)-tensor = “row-column" matrix I with I �
� = � �

�
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.7



GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

ordinary linear algebra: column vectors, row vectors,
matrices
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

e.g.: (0; 2)-tensor: metric g��
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

using h; i , (1; 0)-tensor = vector = function of 1-forms
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

using h; i , (0; 1)-tensor = 1-form = function of vectors
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

(m; n)-tensor = function of m 1-forms and n vectors
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

(m; n)-tensor = function of m 1-forms and n vectors

V = space of vectors ~p= p� ~e�
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

(m; n)-tensor = function of m 1-forms and n vectors

V = space of vectors ~p= p� ~e�

V � = dual space of 1-forms ~q = q� ~e�
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

(m; n)-tensor = function of m 1-forms and n vectors

V = space of vectors ~p= p� ~e�

V � = dual space of 1-forms ~q = q� ~e�

V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� (e.g.
metric) w:tensor product
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

(m; n)-tensor = function of m 1-forms and n vectors

V = space of vectors ~p= p� ~e�

V � = dual space of 1-forms ~q = q� ~e�

V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� (e.g.
metric) w:tensor product

loosely speaking, the second 
 means “function of two
vectors" (or 1-forms, or a vector and a 1-form) in that
particular left-to-right order
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

(m; n)-tensor = function of m 1-forms and n vectors

V = space of vectors ~p= p� ~e�

V � = dual space of 1-forms ~q = q� ~e�

V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� (e.g.
metric) w:tensor product

order of V � 
 V � = 2
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

(m; n)-tensor = function of m 1-forms and n vectors

V = space of vectors ~p= p� ~e�

V � = dual space of 1-forms ~q = q� ~e�

V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� (e.g.
metric) w:tensor product

order of V � 
 V � = 2

warning: the “rank" of tensors has two different
meanings: w:Tensor_(intrinsic_de�nition)#Tensor_rank
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GR: ~p; ~q;h~p; ~qi ; g
GR tensors: two different scalar products

(m; n)-tensor algebra: m column n row m + n-arrays

(m; n)-tensor = function of m 1-forms and n vectors

V = space of vectors ~p= p� ~e�

V � = dual space of 1-forms ~q = q� ~e�

V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� (e.g.
metric) w:tensor product

order of V � 
 V � = 2

dimension of V � 
 V � = 16 (for V = spacetime)
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.8



GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.8



GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B)
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

also written: ~A � ~B “dot product"
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B)
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B) =

" 
1 0
0 r 2

!  
Ar

A �

!# T  
B r

B �

!
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B) =
�
Ar ; A � r 2

�
 

B r

B �

!
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B) = Ar B r + A � B � r 2
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B) = Ar B r + A � B � r 2

=

" 
1 0
0 1

!  
Ax

Ay

!# T  
B x

B y

!
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GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B) = Ar B r + A � B � r 2 = ( Ax ; Ay)

 
B x
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!

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.8



GR: g
V � 
 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is
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!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B) = Ar B r + A � B � r 2 = AxB x + AyB y
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 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B) = Ar B r + A � B � r 2 = AxB x + AyB y

in general, for a 2-form T, T( ~A; ~B) 6= T( ~B; ~A)
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 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B) = Ar B r + A � B � r 2 = AxB x + AyB y

g = g�� ~e� 
 ~e�
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 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B) = Ar B r + A � B � r 2 = AxB x + AyB y

g =
P

� 2f r;� g;� 2f r;� g g�� ~e� 
 ~e�
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 V � = space of (0; 2)-tensors T = T�� ~e� 
 ~e� , where

 = w:tensor product

e.g.: metric g = function of two vectors

= “row-row" matrix

e.g. Euclidean g on R2. g in r; � coords is

 
1 0
0 r 2

!

and g in x; y coords is

 
1 0
0 1

!

g( ~A; ~B) = Ar B r + A � B � r 2 = AxB x + AyB y

g =
P

� 2f x;yg;� 2f x;yg g�� ~e� 
 ~e�
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GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�
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GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )
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GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + gr� ~er 
 ~e� + g�r ~e� 
 ~er + g�� ~e� 
 ~e�
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GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

check: g(~er ;~er ) = grr ?
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GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

g(~er ;~er ) = ( grr ~er 
 ~er + g�� ~e� 
 ~e� )(~er ;~er )
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g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

g(~er ;~er ) = grr ~er 
 ~er (~er ;~er ) + g�� ~e� 
 ~e� (~er ;~er )
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g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

g(~er ;~er ) = grr ~er (~er ) ~er (~er ) + g�� ~e� (~er ) ~e� (~er )
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GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

g(~er ;~er ) = grr h~er ;~er i h~er ;~er i + g��


~e� ;~er

� 

~e� ;~er

�
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GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

g(~er ;~er ) = grr � 1 � 1 + g�� � 0 � 0 by duality through
scalar product h; i

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.9



GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

g(~er ;~er ) = grr self-consistent de�nition
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GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

inverse: g� 1 = g�� ~e� 
 ~e� ,
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we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

inverse: g� 1 = g�� ~e� 
 ~e� ,

where g�� g�� = � �
�
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e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

inverse: g� 1 = g�� ~e� 
 ~e� ,

where g�� g�� = � �
�

duality of associate vectors and 1-forms:

g( ~A; ~B) = g� 1( ~A; ~B)
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duality of associate vectors and 1-forms:

g( ~A; ~B) = g� 1( ~A; ~B) = ~A � ~B

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.9



GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

inverse: g� 1 = g�� ~e� 
 ~e� ,

where g�� g�� = � �
�

duality of associate vectors and 1-forms:

g( ~A; ~B) = g� 1( ~A; ~B) = ~A � ~B = g�� A � B �

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.9



GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

inverse: g� 1 = g�� ~e� 
 ~e� ,

where g�� g�� = � �
�

duality of associate vectors and 1-forms:

g( ~A; ~B) = g� 1( ~A; ~B) = ~A � ~B = g�� A � B � = g�� A � B �

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.9



GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

inverse: g� 1 = g�� ~e� 
 ~e� ,

where g�� g�� = � �
�

duality of associate vectors and 1-forms:

g( ~A; ~B) = g� 1( ~A; ~B) = ~A � ~B = g�� A � B � = g�� A � B �

lower an index: g�� A � = A �

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.9



GR: metric tensor g, g� 1, bases
g can be applied to basis vectors ~e�

we can de�ne components (used earlier): g�� := g(~e� ;~e� )

) g = g�� ~e� 
 ~e�

e.g. g = grr ~er 
 ~er + g�� ~e� 
 ~e�

inverse: g� 1 = g�� ~e� 
 ~e� ,

where g�� g�� = � �
�

duality of associate vectors and 1-forms:

g( ~A; ~B) = g� 1( ~A; ~B) = ~A � ~B = g�� A � B � = g�� A � B �

lower index: g�� A � = A � raise index: g�� B � = B �
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GR: what is a coordinate?
a coordinate, e.g. x0 or x1 is a scalar �eld on the
4-manifold

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.10



GR: what is a coordinate?
a coordinate system x � = set of four scalar �elds on the
4-manifold

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.10
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(Bertschinger writes x �
x to show dependence on position

x in manifold 6= vector space)
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a coordinate system x � = set of four scalar �elds on the
4-manifold

x � are differentiable almost everywhere

 scalar field  r
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0
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-1 -0.5 0 0.5 1

e.g. on R2
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e.g. on R2

coordinate singularity 6= singularity in manifold
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coordinate basis: ~e� , ~e� chosen so that:
d~x = d x � ~e� and
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coordinate basis: ~e� , ~e� chosen so that:
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df =

 ~df; d~x

�
for any scalar �eld f coordinate-free

where ~d = ~e� @� in a coordinate basis
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 ~df; d~x
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for any scalar �eld f coordinate-free
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(Bertschinger writes er for the gradient ~d)
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check: df =
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�
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GR: what is a coordinate basis?
coordinate basis: ~e� , ~e� chosen so that:
d~x = d x � ~e� and

df =
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GR: e.g. Euclideang on R2

gr� and gxy

ds2 = d x2 + d y2 = d r 2 + r 2d� 2
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GR: gradient of a vector: r ~A
gradient of scalar �eld: ~d� � er �
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GR: gradient of a vector: r ~A
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GR: er and � �
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the w:Levi-Civita connection
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GR: gradient of one-form er ~A
how does a one-form change with position? er ~A = ?
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GR: gradient of one-form er ~A
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~A; ~B

E�
= @� (A � B � )

= ( @� A � )B � + A � (@� B � )
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+
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GR: smooth manifold and er g
similarly, we can write the (0; 3)-tensor
er g = ( r � g�� )~e� 
 ~e� 
 ~e�

giving r � g�� = @� g�� � � �
�� g�� � � �

�� g��
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Do we know anything interesting about er g for the
manifolds of interest to GR?
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GR: smooth manifold and er g
similarly, we can write the (0; 3)-tensor
er g = ( r � g�� )~e� 
 ~e� 
 ~e�

giving r � g�� = @� g�� � � �
�� g�� � � �

�� g��

also er g� 1 = ( r � g�� )~e� 
 ~e� 
 ~e�

and r � g�� = @� g�� + � �
�� g�� + � �

�� g��

Do we know anything interesting about er g for the
manifolds of interest to GR?
First, we need a rough description of the manifolds we
need for GR.
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GR: smooth manifold and er g
topological manifold M
w:Manifold#Mathematical_de�nition

� only topological properties needed

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.18



GR: smooth manifold and er g
topological manifold M
w:Manifold#Mathematical_de�nition

� only topological properties needed
� no differentiability, no metric needed
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GR: smooth manifold and er g
topological manifold M
w:Manifold#Mathematical_de�nition

� only topological properties needed

next: relation with R4 (or M4)
w:Manifold
� chart := function � �
from part of pseudo-4-
manifold M to part of M4

(Minkowski)
� atlas := set of overlap-
ping charts that cover M
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GR: smooth manifold and er g
if every transition chart := � � � � � 1

� in an atlas for M is
differentiable on R4 (or M4), then M is a
w:differentiable 4-(pseudo-)manifold
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GR: smooth manifold and er g
if every transition chart := � � � � � 1

� in an atlas for M is
differentiable on R4 (or M4), then M is a
w:differentiable 4-(pseudo-)manifold

w:

projections (left-to-right) � 1, � 2, � 3 from S2 to R2
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GR: smooth manifold and er g
if every transition chart := � � � � � 1

� in an atlas for M is
differentiable on R4 (or M4), then M is a
w:differentiable 4-(pseudo-)manifold

w:

� 1 is not differentiable, so � 1 � � � 1
2 is not differentiable
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GR: smooth manifold and er g
if every transition chart := � � � � � 1

� in an atlas for M is
differentiable on R4 (or M4), then M is a
w:differentiable 4-(pseudo-)manifold

w:

atlas not enough to show that S2 = differentiable
2-manifold

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR – p.19



GR: smooth manifold and er g

if every transition chart := � � � � � 1
� in an atlas for M is

differentiable on R4 (or M4), then M is a
w:differentiable 4-(pseudo-)manifold
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GR: smooth manifold and er g

if every transition chart := � � � � � 1
� in an atlas for M is

differentiable on R4 (or M4), then M is a
w:differentiable 4-(pseudo-)manifold

if 8k � 1, 9k-th derivatives, then M is a smooth
4-(pseudo-)manifold
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if every transition chart := � � � � � 1
� in an atlas for M is

differentiable on R4 (or M4), then M is a
w:differentiable 4-(pseudo-)manifold

if 8k � 1, 9k-th derivatives, then M is a smooth
4-(pseudo-)manifold
if a (pseudo-)w:Riemannian metric g can be added to M ,
then (M;g) is a (pseudo-)Riemannian 4-manifold

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.20



GR: smooth manifold and er g

if every transition chart := � � � � � 1
� in an atlas for M is

differentiable on R4 (or M4), then M is a
w:differentiable 4-(pseudo-)manifold

if 8k � 1, 9k-th derivatives, then M is a smooth
4-(pseudo-)manifold
if a (pseudo-)w:Riemannian metric g can be added to M ,
then (M;g) is a (pseudo-)Riemannian 4-manifold
if g has signature (1; n � 1) (i.e. (� ; + ; + ; +) or
(+ ; � ; � ; � ), etc.), then (M;g) is a Lorentzian n-manifold
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GR: smooth manifold and er g

topological manifolds
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topological manifolds
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smooth (pseudo-)manifolds
(pseudo-)Riemannian manifolds
Lorentzian manifolds
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GR: smooth manifold and er g

topological manifolds
differentiable (pseudo-)manifolds
smooth (pseudo-)manifolds
(pseudo-)Riemannian manifolds
Lorentzian manifolds
Lorentzian 4-manifolds

GR: assume that spacetime is a Lorentzian 4-manifold
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GR: smooth manifold and er g
from above:
r � g�� = @� g�� � � �

�� g�� � � �
�� g��
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GR: smooth manifold and er g
from above:
r � g�� = @� g�� � � �

�� g�� � � �
�� g��

in the tangent space at x; 9 coordinate basis ~e�� with
g�� �� = � �� �� = diag( � 1; 1; 1; 1) = g�� ��

) @�� g�� �� = @�� � �� ��
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GR: smooth manifold and er g
from above:
r � g�� = @� g�� � � �

�� g�� � � �
�� g��

in the tangent space at x; 9 coordinate basis ~e�� with
g�� �� = � �� �� = diag( � 1; 1; 1; 1) = g�� ��

) @�� g�� �� = @�� � �� �� = 0
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GR: smooth manifold and er g
from above:
r � g�� = @� g�� � � �

�� g�� � � �
�� g��

in the tangent space at x; 9 coordinate basis ~e�� with
g�� �� = � �� �� = diag( � 1; 1; 1; 1) = g�� ��

) @�� g�� �� = @�� � �� �� = 0

also, � ��
�� �� ~e�� := ~e��; �� = @�� ~e��
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GR: smooth manifold and er g
from above:
r � g�� = @� g�� � � �

�� g�� � � �
�� g��

in the tangent space at x; 9 coordinate basis ~e�� with
g�� �� = � �� �� = diag( � 1; 1; 1; 1) = g�� ��

) @�� g�� �� = @�� � �� �� = 0

also, � ��
�� �� ~e�� := ~e��; �� = @�� ~e��

but in a Cartesian or Minkowski (vector) space, the basis
vectors always point in the same direction and their
lengths are �xed
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g�� �� = � �� �� = diag( � 1; 1; 1; 1) = g�� ��

) @�� g�� �� = @�� � �� �� = 0

also, � ��
�� �� ~e�� := ~e��; �� = @�� ~e��

M4 ) � ��
�� �� ~e�� = 0
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r � g�� = @� g�� � � �
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�� g��

in the tangent space at x; 9 coordinate basis ~e�� with
g�� �� = � �� �� = diag( � 1; 1; 1; 1) = g�� ��

) @�� g�� �� = @�� � �� �� = 0

also, � ��
�� �� ~e�� := ~e��; �� = @�� ~e��

so r �� g�� �� = 0
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�� g��

in the tangent space at x; 9 coordinate basis ~e�� with
g�� �� = � �� �� = diag( � 1; 1; 1; 1) = g�� ��

) @�� g�� �� = @�� � �� �� = 0

also, � ��
�� �� ~e�� := ~e��; �� = @�� ~e��

so r �� g�� �� = 0

so er g = 0 (also er g� 1 = 0 ) on the tangent space, since if
true in one coord system, also true in others
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in the tangent space at x; 9 coordinate basis ~e�� with
g�� �� = � �� �� = diag( � 1; 1; 1; 1) = g�� ��

) @�� g�� �� = @�� � �� �� = 0

also, � ��
�� �� ~e�� := ~e��; �� = @�� ~e��

so r �� g�� �� = 0

so er g = 0 = er g� 1 on tangent space

. . . er g = 0 = er g� 1 on M
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�� g�� � � �
�� g��

in the tangent space at x; 9 coordinate basis ~e�� with
g�� �� = � �� �� = diag( � 1; 1; 1; 1) = g�� ��

) @�� g�� �� = @�� � �� �� = 0

also, � ��
�� �� ~e�� := ~e��; �� = @�� ~e��

so r �� g�� �� = 0

so er g = 0 = er g� 1 on tangent space

. . . er g = 0 = er g� 1 on M

. . . � �
�� = � �

�� in any coord. basis (symmetric defn)
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GR: smooth manifold and er g
from above:
r � g�� = @� g�� � � �

�� g�� � � �
�� g��

in the tangent space at x; 9 coordinate basis ~e�� with
g�� �� = � �� �� = diag( � 1; 1; 1; 1) = g�� ��

) @�� g�� �� = @�� � �� �� = 0

also, � ��
�� �� ~e�� := ~e��; �� = @�� ~e��

so r �� g�� �� = 0

so er g = 0 = er g� 1 on tangent space

. . . er g = 0 = er g� 1 on M

. . . � �
�� = � �

�� in any coord. basis (symmetric defn)
. . .
� �

�� = 1
2g�� (@� g�� + @� g�� � @� g�� ) in a coordinate basis
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GR: directional deriv.: < er ~A; ~V >
� er �; er ~A; er ~A gave how the �elds � , ~A, or ~A change
around the manifold in general

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.23



GR: directional deriv.: < er ~A; ~V >
� er �; er ~A; er ~A gave how the �elds � , ~A, or ~A change
around the manifold in general
� how about moving along a speci�c curve?

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.23



GR: directional deriv.: < er ~A; ~V >
� er �; er ~A; er ~A gave how the �elds � , ~A, or ~A change
around the manifold in general
� how about moving along a speci�c curve?
� curve on manifold parametrised by a continuously
changing real parameter � : x(� )

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.23



GR: directional deriv.: < er ~A; ~V >
� er �; er ~A; er ~A gave how the �elds � , ~A, or ~A change
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� curve on manifold parametrised by a continuously
changing real parameter � : x(� ) = f x � (� )g in a
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around the manifold in general
� how about moving along a speci�c curve?
� curve on manifold parametrised by a continuously
changing real parameter � : x(� ) = f x � (� )g in a
coordinate basis
� can de�ne tangent vectors along the curve, i.e.
~V(� ) := d~x

d�
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� er �; er ~A; er ~A gave how the �elds � , ~A, or ~A change
around the manifold in general
� how about moving along a speci�c curve?
� curve on manifold parametrised by a continuously
changing real parameter � : x(� ) = f x � (� )g in a
coordinate basis
� can de�ne tangent vectors along the curve, i.e.
~V(� ) := d~x

d� = dx �

d� ~e�
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GR: directional deriv.: < er ~A; ~V >
� er �; er ~A; er ~A gave how the �elds � , ~A, or ~A change
around the manifold in general
� how about moving along a speci�c curve?
� curve on manifold parametrised by a continuously
changing real parameter � : x(� ) = f x � (� )g in a
coordinate basis
� can de�ne tangent vectors along the curve, i.e.
~V(� ) := d~x

d� = dx �

d� ~e�

warning: f x � (� )g at some � on the manifold is a point on
the manifold but NOT a vector; while d~x — in the tangent
space — IS a vector
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GR: directional deriv.: < er ~A; ~V >
using ~V(� ) := d~x

d� , project covariant derivative to curve
using scalar product h; i
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using ~V(� ) := d~x

d� , project covariant derivative to curve
using scalar product h; i
d�
d� � r V � :=

D
er �; ~V

E

or in a coordinate basis. . .
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using ~V(� ) := d~x

d� , project covariant derivative to curve
using scalar product h; i
d�
d� � r V � :=

D
er �; ~V

E

= V � @� �
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GR: directional deriv.: < er ~A; ~V >
using ~V(� ) := d~x

d� , project covariant derivative to curve
using scalar product h; i
d�
d� � r V � :=

D
er �; ~V

E

= V � @� �

r V written by Bertschinger without~ or ~because r V T of
tensor T has the same tensor order as T
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GR: directional deriv.: < er ~A; ~V >
using ~V(� ) := d~x

d� , project covariant derivative to curve
using scalar product h; i
d�
d� � r V � :=

D
er �; ~V

E

= V � @� �

for a vector �eld:

1 � � � � ~d � � hi � g � x � � d s 2 � r ~A ; � M � r V = 0 � R � > SR+� GR O – p.24



GR: directional deriv.: < er ~A; ~V >
using ~V(� ) := d~x

d� , project covariant derivative to curve
using scalar product h; i
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E
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d ~A
d� � r V ~A :=

D
er ~A; ~V

E
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er ~A; ~V

E
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d� , project covariant derivative to curve
using scalar product h; i
d�
d� � r V � :=

D
er �; ~V

E

= V � @� �

d ~A
d� � r V ~A :=

D
er ~A; ~V

E

= V � ( er ~A)�
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d� , project covariant derivative to curve
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d� � r V � :=

D
er �; ~V

E

= V � @� �

d ~A
d� � r V ~A :=

D
er ~A; ~V

E
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GR: directional deriv.: < er ~A; ~V >
using ~V(� ) := d~x

d� , project covariant derivative to curve
using scalar product h; i
d�
d� � r V � :=

D
er �; ~V

E

= V � @� �

d ~A
d� � r V ~A :=

D
er ~A; ~V

E

= V � (r � A � )~e�

= V � (A �
;� + A � � �

�� )~e�
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GR: directional deriv.: < er ~A; ~V >
using ~V(� ) := d~x

d� , project covariant derivative to curve
using scalar product h; i
d�
d� � r V � :=

D
er �; ~V

E

= V � @� �

d ~A
d� � r V ~A :=

D
er ~A; ~V

E

= V � (r � A � )~e�

= V � (A �
;� + A � � �

�� )~e�

so in a coord basis,

r V ~A =
�

dA �

d� + V � A � � �
��

�
~e�
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GR: directional deriv.: < er ~A; ~V >
special (interesting) case: vector �eld ~A and curve with
tangents ~V := d~x

d� where ~A “locally does not change
direction"
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GR: directional deriv.: < er ~A; ~V >
special (interesting) case: vector �eld ~A and curve with
tangents ~V := d~x

d� where ~A “locally does not change
direction"
i.e. r V ~A = 0

r V ~A = 0 defn: parallel transport of ~A along path x(� )

where ~V := d~x
d�
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GR: directional deriv.: < er ~A; ~V >
example:
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GR: directional deriv.: < er ~A; ~V >
example:

on S2, parallel transport of
~A around a closed loop
does not conserve ~A 's di-
rection
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GR: directional deriv.: < er ~A; ~V >
r V ~V = 0 defn: w:geodesic
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GR: directional deriv.: < er ~A; ~V >
r V ~V = 0 defn: w:geodesic

� more general de�nition of “straight line" than “shortest
distance between two points"
� tensorial de�nition — independent of coordinate basis
� allows more than one “straight line" between two points
a and b in a manifold — consider S2, T3
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r V ~V = 0 defn: w:geodesic

� more general de�nition of “straight line" than “shortest
distance between two points"
� tensorial de�nition — independent of coordinate basis
� allows more than one “straight line" between two points
a and b in a manifold — consider S2, T3

i.e. ( dV �

d� + V � V � � �
�� )~e� = ~0
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� more general de�nition of “straight line" than “shortest
distance between two points"
� tensorial de�nition — independent of coordinate basis
� allows more than one “straight line" between two points
a and b in a manifold — consider S2, T3

i.e. dV �

d� + V � V � � �
�� = 0 8�
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GR: directional deriv.: < er ~A; ~V >
r V ~V = 0 defn: w:geodesic

� more general de�nition of “straight line" than “shortest
distance between two points"
� tensorial de�nition — independent of coordinate basis
� allows more than one “straight line" between two points
a and b in a manifold — consider S2, T3

i.e. d2x �

d� 2 + dx �

d�
dx �

d� � �
�� = 0 8�
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GR: directional deriv.: < er ~A; ~V >
r V ~V = 0 defn: w:geodesic

� more general de�nition of “straight line" than “shortest
distance between two points"
� tensorial de�nition — independent of coordinate basis
� allows more than one “straight line" between two points
a and b in a manifold — consider S2, T3

i.e. d2x �

d� 2 + dx �

d�
dx �

d� � �
�� = 0 8�

cf w:Euler-Lagrange equation
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GR: parallel transp. @closed curve
parallel transport around “small" parallelogram in two
directions d~x1; d~x2;
(“1" and “2" are not component indices here)
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GR: parallel transp. @closed curve
parallel transport around “small" parallelogram in two
directions d~x1; d~x2;

What is the change in ~A after parallel transport around
the closed loop d~x1; d~x2; � d~x1; � d~x2 ?
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directions d~x1; d~x2;

What is the change in ~A after parallel transport around
the closed loop d~x1; d~x2; � d~x1; � d~x2 ?

/ ~A
/ d~x1; d~x2
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GR: parallel transp. @closed curve
parallel transport around “small" parallelogram in two
directions d~x1; d~x2;

What is the change in ~A after parallel transport around
the closed loop d~x1; d~x2; � d~x1; � d~x2 ?
) must exist a tensor R that is a function of 3 vectors
(“inputs"),
i.e. is a 
 of 3 one-forms
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GR: parallel transp. @closed curve
parallel transport around “small" parallelogram in two
directions d~x1; d~x2;

What is the change in ~A after parallel transport around
the closed loop d~x1; d~x2; � d~x1; � d~x2 ?
) must exist a tensor R that is a function of 3 vectors
(“inputs"),
i.e. has 3 covariant 
 components
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parallel transport around “small" parallelogram in two
directions d~x1; d~x2;

What is the change in ~A after parallel transport around
the closed loop d~x1; d~x2; � d~x1; � d~x2 ?
) must exist a tensor R that is a function of 3 vectors
(“inputs"),
i.e. is a (?; 3) tensor
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GR: parallel transp. @closed curve
parallel transport around “small" parallelogram in two
directions d~x1; d~x2;

What is the change in ~A after parallel transport around
the closed loop d~x1; d~x2; � d~x1; � d~x2 ?
) must exist a tensor R that is a function of 3 vectors
and behaves like a vector (when applied to 3 vectors)
i.e. a (1; 3) tensor
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GR: parallel transp. @closed curve
parallel transport around “small" parallelogram in two
directions d~x1; d~x2;

What is the change in ~A after parallel transport around
the closed loop d~x1; d~x2; � d~x1; � d~x2 ?
) must exist a tensor R that is a function of 3 vectors
and behaves like a vector (when applied to 3 vectors)
i.e. a (1; 3) tensor

defn: � R(�; ~A; d~x1; d~x2) := d ~A(�)
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parallel transport around “small" parallelogram in two
directions d~x1; d~x2;

What is the change in ~A after parallel transport around
the closed loop d~x1; d~x2; � d~x1; � d~x2 ?
) must exist a tensor R that is a function of 3 vectors
and behaves like a vector (when applied to 3 vectors)
i.e. a (1; 3) tensor

defn: � R(�; ~A; d~x1; d~x2) := d ~A(�)

(minus sign convention: MTW1973, Bertschinger)
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GR: Riemann tensor
how can R be evaluated?
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GR: Riemann tensor
� �rst order @:
(pseudo-)manifold locally like R3 (M4), 9 coords where
� �

�� = 0 locally
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GR: Riemann tensor
� �rst order @:
(pseudo-)manifold locally like R3 (M4), 9 coords where
� �

�� = 0 locally

� second order @:
(pseudo-)manifold globally like R3 (M4) , R�

��� (x) = 0 8x
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GR: Bianchi, Ricci, Einstein
. . . second Bianchi identity:
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w:Ricci curvature tensor (by components):
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w:scalar curvature � Ricci scalar:
R := g�� R��

warning: “R" written coordinate-free may mean:
� an order 4, dimension 64 tensor R;
� an order 2, dimension 16 tensor R or R; or
� an order 0, dimension 1 tensor � scalar R
� all three are �elds over a spacetime 4-manifold
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w:Proofs involving covariant derivatives

. . . r � (R�� � 1
2g�� R) = 0
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w:scalar curvature � Ricci scalar:
R := g�� R��

w:Proofs involving covariant derivatives

. . . r � (R�� � 1
2g�� R) = 0

defn Einstein tensor (by components):

G�� := R�� � 1
2g�� R

) r � G�� = 0
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w:Ricci curvature tensor (by components):
R�� := R�
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w:scalar curvature � Ricci scalar:
R := g�� R��

w:Proofs involving covariant derivatives

. . . r � (R�� � 1
2g�� R) = 0

defn Einstein tensor (by components):

G�� := R�� � 1
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) r � G�� = 0
w:List of formulas in Riemannian geometry
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GR: other basic topics
w:Stress-energy tensor
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