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Open questions
❖ Are there important relativistic 

effects in cosmology which our 
models currently neglect (e.g. 
Concordance)?
❖ Conceptual issues
❖ Observational tensions

❖ How do structures assemble in GR?

❖ What is the relationship between 
relativistic isolated-object and 
FLRW solutions?

KIPAC/SLAC/AMNH



Concordance Model
❖ Cosmological Principle: On large 

scales, the Universe is homogeneous and 
isotropic.

❖ Standard model based on three 
ingredients:
❖ FLRW  background

❖ Linear perturbations of FLRW on the larger 
scales

❖ Newtonian gravity on the smaller scales

s ≫
 D

s ≪
 D 10 Gpc

10 kpc

LINEAR, 
RELATIVISTIC

NONLINEAR, 
NON-RELATIVISTIC



❖ Experimental systematics
❖ Control over sources, astrophysical processes, etc.
❖ Relativistic effects (statistics!)

H0 (km s-1 Mpc-1)

Local Universe [Riess et al. 2016] 73.24 ± 1.74

Planck+WMAP+ACT+SPT+BAO 69.3 ± 0.7

Concordance Model
Huge simplification in the treatment of processes from the early to the late 
Universe, data can be fitted with only a small numbers of parameters.
Good enough?



Cosmology  is  emerging  as  a  full-blown  experimental  science:  along  with  better 
experiments and better data analysis, we need better modelling!

Concordance Model



Cosmological parameters used pervasively in astrophysics and cosmology: errors 
can propagate and affect other studies.

Multimessenger studies may reveal inconsistent information from gravitational and 
electromagnetic spectrum if models are not accurate enough.

Concordance Model



Better modelling?

Beyond Concordance

Newtonian two-body interaction plus some relativistic 
corrections [Thomas+ 2014, Adamek+ 2014-2016, Rácz 
2016].  (But  post-*an  approach  may  hold  back 
relativistic insight.)

Solving  Einstein’s  equations  for  a  cosmological  model 
where nonlinearities are important. [Clifton+ 2009-2016, 
Bentivegna+  2012-2016,  Yoo+  2012-2016,  Mertens+ 
2015-2016, …] (But high computational cost, low realism.)



Einstein’s  equation  can  be  solved  exactly  by  formulating  it  as  an  initial-boundary  value 
problem, and integrating numerically. One needs to choose a time coordinate and project the 
equations accordingly.

Numerical Relativity for Cosmology
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Typical recipe:
❖ Choose topology and stress-energy content:

❖ Solve the Einstein constraints to obtain initial data:

❖ Choose numerical coordinates

❖ Integrate the evolution equations (with the relevant matter content)
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Thanks to numerical relativity, a number of these scenarios have been under 
scrutiny in the last ten years, with many more being actively pursued now:

❖ Black-hole binaries
❖ Neutron-star binaries
❖ Mixed binaries
❖ Gravitational collapse 
❖ and supernovae
❖ Black holes surrounded 

by accretion disks

The  methods  and  tools  of  Numerical  Relativity  can  in  principle  help 
construct general, exact spacetimes, thereby providing a laboratory to study 
any system at will (but beware of assumptions…).

Numerical Relativity for Cosmology

MPI for Gravitational Physics/W.Benger-ZIB



Singularities:  Matzner,  Weaver  (1970), 
Berger, Garfinkle (1991, 1997, 2004)

Numerical Relativity for Cosmology
Inflation:  Centrella,  Wilson,  Kurki-Suonio,  Laguna,  Matzner 
(1983, 1984, 1987, 1993, 1996), Bastero-Gil, Tristram, Macias-Perez, 
Santos  (2007),  East,  Kleban,  Linde,  Senatore,  Kearney,  Shakya, 
Yoo, Zurek (2015, 2016), Braden, Johnson, Peiris, Aguirre (2016)

Phase  transitions  in  the  early  universe  and  primordial 
gravitational waves: Rezzolla, Miller, Pantano (1995), Bastero-
Gil, Macias-Perez, Santos (2010), Wainwright, Johnson, Peiris, 
Aguirre, Lehner, Liebling (2014)

Large-scale structure, black-hole formation: Anninos, Centrella, McKinney, 
Wilson (1984, 1985, 1999), Shibata (1999), Bentivegna, Korzyński, Hinder, 
Bruni  (2012-2015),  Yoo,  Okawa,  Nakao  (2012-2016),  Torres,  Alcubierre, 
Diez-Tejedor, Nunez, de la Macorra (2014-2015), Rekier, Cordero-Carrion, 
Fuzfa (2015), Mertens, Giblin, Starkman (2015-2016)



Construct numerical, fully relativistic spacetimes satisfying the Cosmological 
Principle above a certain scale but inhomogeneous below it.

The Late Universe

APPROACH I: DISCRETE

Relativistic “N-body”, 
regular lattices of black 
holes.

APPROACH II: CONTINUUM

Evolution of perturbed 
perfect fluids beyond the 
perturbative regime.



Black-hole lattices

* **

[Lindquist&Wheeler 1957]

Several roads:

❖ Junction conditions [Clifton 2009]

❖ Series  expansions  [Bruneton&Larena 
2012]

❖ Solving  the  GR  constraints  [Wheeler 
1983, Clifton et al. 2012, Yoo et al. 2012, 
Bentivegna&Korzyński  2012,  Yoo  et 
al. 2013, Bentivegna&Korzyński 2013]



Keep a zero extrinsic curvature, but 
choose  a  conformal  metric  that  is 
not flat [Wheeler 1983, Clifton et al. 
2012]:

Notes: 

Solutions  only  for  positive  scalar 
curvature  (analogy  to  the  FLRW 
class);

The hamiltonian constraint is linear! 
One  can  use  the  superposition 
principle  to  construct  multi-black-
hole solutions.

Black-hole lattices
General principle [Choquet-Bruhat, Kleban & Senatore 2016]. Some options:

Keep  a  flat  conformal  metric,  but 
use  a  non-zero  extrinsic  curvature 
[Yoo et al. 2012]:

Requires:

Numerical integration;

Extreme  care  with  periodic 
boundaries.

separation of the extrinsic curvature into its trace K and traceless part Aij :
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ij � 2

3
⌅6�̃ijD̃iK = 0 (6)

�̃ being the laplacian operator of the conformal metric �̃ij , and Ãij being related
to Aij by Ãij = ⌅2Aij .

Let us focus on the hamiltonian constraint. We would like to solve this
equation with the “puncture” ansatz for the conformal factor:

⌅ =
M

r
(7)

[TODO: what is r?] and periodic boundary conditions. It can be easily proven,
then, that unlike in the asymptotically-flat case, if Kij and R are both zero,
then this is a slice of Minkowski spacetime. This becomes apparent if one
integrates both sides of equation 5 on the fundamental cell of the desired lattice
(see Figure ??):
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So
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which is only satisfied if M = 0. [TODO: I know this works if the metric is
conformally flat. Does it hold in general?]

Thus, for non-zeroM , there are at least two possibilities: a non-zero extrinsic
curvature or a non-zero spatial scalar curvature. In this work, we concentrate
on the Kij = 0 case, since the momentum constraint is trivally satisfied and the
hamiltonian constraint remains linear, and one can therefore construct multiple–
black-hole solution by superposition. We concentrate on the positive-R case,
where the spatial slices have the topology of S3. [TODO: In fact, they are
conformally S3. I think this is theorem, and we should cite it]

Notice that, whilst this argument strictly applies only to initial-data genera-
tion in the conformal transverse-traceless case, it is arguable that the additional
constraint due to the periodic requirement is quite a general feature.

2.1 Punctures on a 3–sphere

We consider puncture–like solutions of the hamiltonian constraint when �̃ij and
R̃ are the metric tensor and scalar curvature of S3:

�̃⌅ � R̃

8
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We fix coordinates on S3 such that:
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Other  properties,  however,  can  be  substantially  different.  In  particular, 
mapping the BH lattices to the FLRW class via their geometric properties leads 
to counterparts with much larger effective densities [Bentivegna & Korzyński 
2012, 2013]:

                                                                               One must choose which mapping
                                                                               to use (fitting problem non 
                                                                               trivial). Fitting one observable 
                                                                               leads to a degradation in the 
                                                                               quality of fit to the others.

Black-hole lattices
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[Bentivegna, Korzyński, Hinder & 
Gerlicher, arXiv:1611.09275]

• Light propagation through a BHL 
remains close to the prescription 
of the empty-beam 
approximation;

• Decreasing                     , there is a 
O(1) difference in the luminosity 
distance;

• This difference can be mimicked 
by a negative-pressure fluid.

Tracing light helps probe higher-order effects, and is a key element in building 
cosmological observables.

Black-hole lattices

µ = M/L



Black-hole lattices
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Black-hole lattices
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Black-hole lattices
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Dust cosmologies
How universal is this result?
Same procedure in non-vacuum spacetimes, same ID restriction [Anninos 1999, Giblin, 
Mertens & Starkman 2015, Bentivegna&Bruni, 2015]:

Approach much more similar to standard cosmological treatments of perturbed fluids. 
Many analytical approximations available in various regimes.

DENSITY CONTRAST VOLUME ELEMENT



Dust cosmologies
Perturbation  theory  around  a 
homogeneous and isotropic background:

In the background:

In the perturbed spacetime:

The averages satisfy equations similar to 
those  that  hold  in  FLRW  models,  but 
with  an  extra  contribution  due  to 
inhomogeneities:ds2 = �dt2 + �ijdx

idxj
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Dust cosmologies
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❖ Start at z=100, evolution of 

initial data with five initial 
perturbation amplitude: two 
largest depart from first-order 
perturbation theory by z=0.

❖ Average expansion remains 
close to FLRW solution: 
departure at most 0.1%.



Dust cosmologies
❖ Local expansion can exhibit 

departures of order ~30%

❖ Collapse occurs faster than 
spherical models (e.g., top-hat)

❖ Backreaction function Q is 
extremely small, scales like a-2 

for small density contrasts
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The Einstein Toolkit:
❖ Open-source toolkit;
❖ One code-generating 

framework;
❖ Over one hundred 

components (evolution of 
the gravitational field and 
fluids, analysis of 
spacetimes, I/O);

❖ AMR capabilities;
❖ Leveraging HPC systems 

worldwide;
❖ Tutorials and demos for 

new users — try it out!

Code infrastructure

einsteintoolkit.org



Einstein Toolkit:
❖ 3+1 BSSN code (McLachlan);
❖ ADM analysis module;
❖ Apparent-horizon finder;
❖ Utilities (I/O, visualization, simulation management).

Not in the Toolkit:
❖ Cosmological ID solver [arXiv:1305.5576];
❖ Dust evolution [arXiv:1610.05198];
❖ Cosmological analysis modules (backreaction);
❖ Ray tracing module [arXiv:1611.09275] 

}Kranc

Code infrastructure



Open Issues
• Initial-data prescriptions

• Represent physically “reasonable” class of observers
• Provide easy control over physical content of prescription

• Dynamical coordinates
• Must represent physical  prescription of  observers at  all 

times
• Must lead to well-behaved simulations

• Efficient use of numerical resolution
• Better AMR algorithms



- 1 -
A consistently relativistic model of the large-scale Universe 

is necessary, and feasible.

- 2 -
Early results are intriguing:

Universal initial-data no-go

Length scaling follows FLRW class

Light propagation probes higher-order effects

Summary


