# Symmetry in Szekeres Models

Ira Georg

University of Cape Town

05 July 2017

LT metric

$$ds^2 = -dt^2 + \frac{R^{\prime 2}}{1+f}dr^2 + R^2d\Omega^2$$



LT metric

$$ds^2 = -dt^2 + \frac{R^{\prime 2}}{1+f}dr^2 + R^2d\Omega^2$$



- radial proper distance  $\frac{R'(r,t)}{\sqrt{1+f(r)}} dr$
- depends on r, t
- This creates the inhomogeneity
- Shell-crossing

### Szekeres metric

LT-metric:

$$ds^2 = -dt^2 + \frac{R^{\prime 2}}{1+f}dr^2 + R^2d\Omega^2$$

Szekeres metric:

$$ds^2 = -dt^2 + rac{(R'-R\mathcal{E}'/\mathcal{E})^2}{\epsilon+f}dr^2 + rac{R^2}{\mathcal{E}^2}(dp^2+dq^2)$$

where S, P, Q, f are functions of r only, and R = R(t, r)

$$\mathcal{E} = \frac{S}{2} \left[ \epsilon + \left( \frac{p - P}{S} \right)^2 + \left( \frac{q - Q}{S} \right)^2 \right]$$

### Szekeres metric



- "radial" proper distance  $\frac{R' - R\mathcal{E}'/\mathcal{E}}{\sqrt{1+f(r)}} dr$
- r merely labels shells
- shells cannot agree on a radial direction
- proper distance depends on all coordinates r, p, q, t
- shell-crossing



- there is a minimum and a maximum distance between two "neighbouring" shells
- points on a curve of latitude have same distance to the next shell
- points on curves of latitude are constant in *E*'/*E*
- $\Rightarrow$  Dipole structure on shells.

# BST Theorem

after Bonnor, Sulaiman, Tomimura, Gen. Relativ. Gravit. **8**, 549 (1977), "Szekere's Space-Times Have No Killing Vectors"

#### short:

Szekeres solutions ( $\epsilon = 1$ ) in their most general form have no Killing vector fields, except possibly on isolated submanifolds of the space time.

#### longer:

Consider a Szekeres space time that is not singular and not FLRW. If it satisfies the following conditions

• 
$$\epsilon = 1$$

$$M' \neq 0, f' \neq 0$$

 $\square$  P', Q' are linearly independent

then there is no Killing vector field except possibly on isolated submanifolds of the space time.

# BST Theorem

after Bonnor, Sulaiman, Tomimura, Gen. Relativ. Gravit. **8**, 549 (1977), "Szekere's Space-Times Have No Killing Vectors"

#### short:

Szekeres solutions in their most general form have no Killing vector fields, except possibly on isolated submanifolds of the space time.

#### longer:

Consider a Szekeres space time that is not singular and not FLRW. If it satisfies the following conditions

• 
$$M' \neq 0, f' \neq 0$$
 for  $\epsilon = \pm 1$  and  $\frac{f}{M^{2/3}} \neq \text{const.}$  for  $\epsilon = 0$ 

 $\square$  P', Q' are linearly independent

then there is no Killing vector field except possibly on isolated submanifolds of the space time.

### Motivation

- We started with a simple question: what models are axisymmetric? If the most general Szekeres models have no symmetry what restrictions on the free functions then lead to a symmetry?
  - BST: "It would be interesting to enumerate the types of symmetry that arise for special choices of the arbitrary fuctions in Szekeres solution."
- Models with one symmetry can be considered as stepping stones between full symmetry and no symmetry.

Guess



- dipoles align
- looking down the axis: we find rotational symmetry
- the axis must be a "straight line", i.e. a geodesic
- along the axis all shells agree on this radial direction

# What about $\epsilon \neq 1$ ?

# Stereographic Projection



# $\mathcal{E}'/\mathcal{E}$ contour lines



Figure: Dipole on sphere



Figure: Dipole on *p*, *q* plane

## Killing equation

$$\mathcal{L}_{\xi}g_{\mu\nu} = 0 \quad \Rightarrow \quad \xi_{\nu;\mu} + \xi_{\mu;\nu} = 0 \quad \Rightarrow \quad \begin{array}{c} 1. \quad hP' = \text{const.} \\ 2. \quad hQ' = \text{const.} \\ 3. \quad h(\epsilon SS' + PP' + QQ') = \text{const.} \end{array}$$

where h(r) is a function of integration.

Case 1 P' = 0 = Q'. No constraint on S. This is the well known case. Case 2 Let one of P', Q' be zero and the other one nonzero, say  $P' \neq 0$ , Q' = 0. Then

$$\epsilon S^2 = -P^2 + 2c_2P + c_3$$
.

Case 3 Let both  $P', Q' \neq 0$ . Then

$$Q = cP + c_Q$$
,  
 $\epsilon S^2 = -(1 + c^2)P^2 + 2c_2P + c_3$ .





extreme points = fixed points if extreme points exists but there are KVF with fixed points even though the extreme points do not exists (hyperbolic geometry)

$$\mathcal{E}'/\mathcal{E}|_e \stackrel{\text{case } 3 \text{ cond.}}{=} \pm \frac{P'}{\epsilon S^2} \sqrt{d}$$
  
 $d = c_2^2 + (1 + c^2)c_3$ 



## Conclusion

quasi-spherical: The well known axisymmetric models are all there is except for conformal coordinate transformations

quasi-planar: There is either full symmetry or no symmetry.

quasi-hyperbolic: There are rotational symmetric models but also models with a single symmetry (horolation, h-translation) that are not rotational. However the latter then suffer from shell-crossings.

- $\blacksquare$  BST is generalisable to all  $\epsilon$
- in the case of axial symmetry  $\mathcal{E}'/\mathcal{E}$  coincides with the Killing Vector field streamlines.
- axis of symmetry is geodesic

# Thank You!