Averaging general inhomogeneous fluids on arbitrary spatial foliations in Relativistic Cosmology

Pierre Mourier

in collaboration with Thomas Buchert and Xavier Roy

CENTRE DE RECHERCHE ASTROPHYSIQUE DE LYON

Université Claude Bernard

Inhomogeneous Cosmology Workshop Toruń 4th July 2017 Introduction: Averaging and foliations

I – Geometrical setting and fluid content

II – Averaging the 3+1 Einstein scalar equations

III – Toward a more fluid-intrinsic approach

INTRODUCTION: AVERAGING AND FOLIATIONS

Fluid-orthogonal foliation (irrotational flow)

Arbitrary spatial foliations ?

Generalize the system of averaged scalar Einstein equations

 \rightarrow allows for other choices of spatial sections and a more general fluid content

Buchert, T.: On average properties of inhomogeneous fluids in general relativity: dust cosmologies, Gen. Rel. Grav. **32**, 105 (2000)

Buchert, T.: On average properties of inhomogeneous fluids in general relativity: perfect fluid cosmologies, Gen. Rel. Grav. **33**, 1381 (2001)

Several proposals have already been suggested:

Kasai, M., Asada, H., Futamase, T.: Toward a no-go theorem for an accelerating universe through a nonlinear backreaction, Progr. Theor. Phys. **115**, 827 (2006); Tanaka, H., Futamase, T.: A phantom does not result from a backreaction, Progr. Theor. Phys. **117**, 183 (2007)

Larena, J.: Spatially averaged cosmology in an arbitrary coordinate system, Phys. Rev. D 79, 084006 (2009)

Brown, I.A., Behrend, J., Malik, K.A.: Gauges and cosmological backreaction, J. Cosmol. Astropart. Phys., JCAP 0911:027 (2009)

<u>Gasperini, M., Marozzi, G., Veneziano, G.</u>: Gauge invariant averages for the cosmological backreaction, J. Cosmol. Astropart. Phys., JCAP0903:011 (2009); <u>Gasperini, M., Marozzi, G., Veneziano, G.</u>: A covariant and gauge invariant formulation of the cosmological "backreaction", J. Cosmol. Astropart. Phys., JCAP1002:009 (2010)

Räsänen, S.: Light propagation in statistically homogeneous and isotropic universes with general matter content, J. Cosmol. Astropart. Phys., JCAP1003:018 (2010)

Beltrán Jiménez, J., de la Cruz-Dombriz, Á., Dunsby, P.K.S., Sáez-Gómez, D.: Backreaction mechanism in multifluid and extended cosmologies, J. Cosmol. Astropart. Phys., JCAP1405:031 (2014)

Smirnov, J.: Gauge-invariant average of Einstein equations for finite volumes, [arXiv:1410.6480] (2014)

For regional domains, **domain propagation** is crucial to the dynamics.

It should be Lagrangian.

Geometrical setting and fluid content Lapse and Shift

Globally hyperbolic structure

Choice of a foliation \leftrightarrow Choice of the normal vector field n, irrotational (Frobenius theorem)

 $(n^{\mu}n_{\mu}=-1)$

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

Adapted coordinates set (t, x^i) :

time is constant on each hypersurface and labels them: $\Sigma(t)$; arbitrary spatial coordinates x^i

 \rightarrow in these coordinates:

$$n^{\mu} = \frac{1}{N} \left(1, -N^{i}_{\mathbb{N}} \right), \quad n_{\mu} = -N \left(1, 0 \right)$$

lapse (set by foliation choice and time normalization) **shift** (can be set through the propagation of the spatial coordinates)

Conventions: • c = 1

- metric signature (-,+,+,+)
- Greek letters for space-time indices (0 to 3), Latin letters for spatial indices (1 to 3)

Fluid content — Tilt

Universe filled with a **single fluid**, characterized by its velocity field u, rest-mass density ρ and general energy-momentum tensor

Decomposition of u with respect to the foliation:

$$\begin{split} & u = \gamma \left(n + v \right) \\ & \text{with } n^{\mu} v_{\mu} = 0 \ \text{ (tilt vector)} \\ & \text{and } \gamma = -n^{\mu} u_{\mu} = \frac{1}{\sqrt{1 - v^{\mu} v_{\mu}}} \ \text{ (tilt factor or Lorentz factor)} \end{split}$$

$$\mathcal{V}_{\mathcal{D}} \equiv \int_{\mathcal{D}} \sqrt{h(t, x^{i})} \, \mathrm{d}^{3}x$$

$$\langle \psi \rangle_{\mathcal{D}} \equiv \frac{1}{\mathcal{V}_{\mathcal{D}}} \int_{\mathcal{D}} \psi(t, x^{i}) \sqrt{h(t, x^{i})} \, \mathrm{d}^{3}x$$

$$a_{\mathcal{D}}(t) \equiv \left(\frac{\mathcal{V}_{\mathcal{D}}(t)}{\mathcal{V}_{\mathcal{D}_{i}}}\right)^{1/3}$$

$$+ \text{fluid-comoving domain} \qquad \longrightarrow \quad \frac{1}{a_{\mathcal{D}}} \frac{\mathrm{d}a_{\mathcal{D}}}{\mathrm{d}t} = \frac{1}{3} \left\langle -N\mathcal{K} + \left(Nv^{i}\right)_{||i}\right\rangle_{\mathcal{D}}$$

$$\overset{\text{trace of the}}{\underset{\text{extrinsic curvature}}{\overset{\text{spatial}}{\underset{\text{covariant}}{\overset{\text{covariant}}{\underset{\text{derivative}}{\overset{\text{d}}}}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}}}}}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}{\overset{\text{d}}}}}}} + \left\langle \left(-N\mathcal{K} + \left(Nv^{i}\right)_{||i}\right)\psi}\right)_{\mathcal{D}}$$

3+1 Einstein equations (scalar part):

$$\partial_{t} \Big|_{x^{i}} \mathcal{K} = N \left[\mathcal{R} + \mathcal{K}^{2} - 4\pi G \left(3E - S \right) - 3\Lambda \right] - N^{||i|}_{||i|} + N^{i} \mathcal{K}_{||i|}$$

$$\mathcal{R} + \mathcal{K}^{2} - \mathcal{K}^{i}_{j} \mathcal{K}^{j}_{i} = 16\pi G E + 2\Lambda$$

$$\bigwedge$$
hypersurfaces intrinsic extrinsic curvature energy density energy density pressure (x3)
$$\rightarrow \text{ averaging:} \quad 3\frac{1}{a_{\mathcal{D}}} \frac{d^{2}a_{\mathcal{D}}}{dt^{2}} = -4\pi G \left\langle N^{2} \left(\epsilon + 3p\right) \right\rangle_{\mathcal{D}} + \left\langle N^{2} \right\rangle_{\mathcal{D}} \Lambda + \mathcal{Q}_{\mathcal{D}} + \mathcal{P}_{\mathcal{D}} + \frac{1}{2}\mathcal{T}_{\mathcal{D}};$$

$$3\left(\frac{1}{a_{\mathcal{D}}} \frac{da_{\mathcal{D}}}{dt}\right)^{2} = 8\pi G \left\langle N^{2}\epsilon \right\rangle_{\mathcal{D}} + \left\langle N^{2} \right\rangle_{\mathcal{D}} \Lambda - \frac{1}{2} \left\langle N^{2} \mathcal{R} \right\rangle_{\mathcal{D}} - \frac{1}{2}\mathcal{Q}_{\mathcal{D}} - \frac{1}{2}\mathcal{T}_{\mathcal{D}}$$

Backreaction terms appear:

kinematical: $\mathcal{Q}_{\mathcal{D}} \equiv \langle N^2 \left(\mathcal{K}^2 - \mathcal{K}_{ij} \mathcal{K}^{ij} \right) \rangle_{\mathcal{D}} - \frac{2}{3} \langle -N\mathcal{K} + \left(Nv^i \right)_{||i} \rangle_{\mathcal{D}}^2$ dynamical: $\mathcal{P}_{\mathcal{D}} \equiv \langle NN^{||i}_{||i} - \mathcal{K} \frac{\mathrm{d}N}{\mathrm{d}t} \rangle_{\mathcal{D}} + \langle \left(\left(Nv^i \right)_{||i} \right)^2 + \frac{\mathrm{d}}{\mathrm{d}t} \left(\left(Nv^i \right)_{||i} \right) - 2N\mathcal{K} \left(Nv^i \right)_{||i} - N^2 v^i \mathcal{K}_{||i} \rangle_{\mathcal{D}}$ tilt: $\mathcal{T}_{\mathcal{D}} \equiv -16\pi G \langle N^2 \left((\gamma^2 - 1)(\epsilon + p) + 2\gamma v^{\alpha} q_{\alpha} + v^{\alpha} v^{\beta} \pi_{\alpha\beta} \right) \rangle_{\mathcal{D}}$

Assuming usual energy conditions and negligible heat vector contribution, $T_{\mathcal{D}} \leq 0$.

+ integrability condition and averaged energy conservation equation

Recalls published proposals, but here **domain propagation is Lagrangian**.

Domain propagation matters for a regional domain $\mathcal{D} \neq \Sigma$: different system considered!

Available proposals: regional domains propagate along n (or ∂_{t}):

1) foliation- or coordinate-dependent considered space-time tube

2) no preservation over time of particle content / rest-mass

No such issues for Lagrangian domains (propagation along *u*); only solution for fluid content preservation

 \rightarrow some formal differences in the equations, important difference in interpretation

More intrinsic to the fluid.

Toward a more fluid-intrinsic approach

The previous equations featured geometric, Eulerian quantities (*e.g.* extrinsic and intrinsic hypersurface curvatures)

 \rightarrow one may use fluid rest-frame kinematic quantities instead:

E.g. for the commutation rule:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \psi \right\rangle_{\mathcal{D}} = \left\langle \frac{\mathrm{d}}{\mathrm{d}t} \psi \right\rangle_{\mathcal{D}} - \left\langle \frac{N}{\gamma} \Theta - \frac{1}{\gamma} \frac{\mathrm{d}\gamma}{\mathrm{d}t} \right\rangle_{\mathcal{D}} \left\langle \psi \right\rangle_{\mathcal{D}} + \left\langle \left(\frac{N}{\gamma} \Theta - \frac{1}{\gamma} \frac{\mathrm{d}\gamma}{\mathrm{d}t} \right) \psi \right\rangle_{\mathcal{D}}$$

$$\Rightarrow 3\left(\frac{1}{a_{\mathcal{D}}}\frac{\mathrm{d}a_{\mathcal{D}}}{\mathrm{d}t}\right)^{2} = 8\pi G\left\langle\frac{N^{2}}{\gamma^{2}}\epsilon\right\rangle_{\mathcal{D}} + \Lambda\left\langle\frac{N^{2}}{\gamma^{2}}\right\rangle_{\mathcal{D}} - \frac{1}{2}\left\langle\frac{N^{2}}{\gamma^{2}}\mathscr{R}\right\rangle_{\mathcal{D}} - \frac{1}{2}\mathcal{Q}_{\mathcal{D}}^{\mathrm{T}}$$
$$\frac{3}{a_{\mathcal{D}}}\frac{\mathrm{d}^{2}a_{\mathcal{D}}}{\mathrm{d}t^{2}} = -4\pi G\left\langle\frac{N^{2}}{\gamma^{2}}(\epsilon+3p)\right\rangle_{\mathcal{D}} + \Lambda\left\langle\frac{N^{2}}{\gamma^{2}}\right\rangle_{\mathcal{D}} + \mathcal{Q}_{\mathcal{D}}^{\mathrm{T}} + \mathcal{P}_{\mathcal{D}}^{\mathrm{T}}$$

with new kinematic and dynamical backreactions:

$$\begin{aligned} \mathcal{Q}_{\mathcal{D}}^{\mathrm{T}} &\equiv \frac{2}{3} \left[\left\langle \left(\frac{N}{\gamma} \Theta \right)^{2} \right\rangle_{\mathcal{D}} - \left\langle \frac{N}{\gamma} \Theta \right\rangle_{\mathcal{D}}^{2} \right] - 2 \left\langle \frac{N^{2}}{\gamma^{2}} \sigma^{2} \right\rangle_{\mathcal{D}} + 2 \left\langle \frac{N^{2}}{\gamma^{2}} \omega^{2} \right\rangle_{\mathcal{D}} + \frac{2}{3} \left(2 \left\langle \frac{N}{\gamma} \Theta \right\rangle_{\mathcal{D}} \left\langle \frac{1}{\gamma} \frac{\mathrm{d}\gamma}{\mathrm{d}t} \right\rangle_{\mathcal{D}} - \left\langle \frac{1}{\gamma} \frac{\mathrm{d}\gamma}{\mathrm{d}t} \right\rangle_{\mathcal{D}}^{2} \right) \\ \mathcal{P}_{\mathcal{D}}^{\mathrm{T}} &\equiv \left\langle \frac{N^{2}}{\gamma^{2}} \nabla_{\mu} a^{\mu} \right\rangle_{\mathcal{D}} + \left\langle \Theta \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{N}{\gamma} \right) \right\rangle_{\mathcal{D}} + \left\langle 2 \left(\frac{1}{\gamma} \frac{\mathrm{d}\gamma}{\mathrm{d}t} \right)^{2} - 2 \frac{N}{\gamma} \Theta \times \frac{1}{\gamma} \frac{\mathrm{d}\gamma}{\mathrm{d}t} - \frac{1}{\gamma} \frac{\mathrm{d}^{2}\gamma}{\mathrm{d}t^{2}} \right\rangle_{\mathcal{D}} \end{aligned}$$

Clearer dependence in the physical variables of the fluid...

but still several contributions from the tilt (\rightarrow foliation dependence)

 \rightarrow Modifying the formalism to reduce this dependence in the tilting of the hypersurfaces ?

... To be continued!

Summary

 \rightarrow importance of a Lagrangian averaging domain

 \rightarrow a system of equations expressing the average evolution of a Lagrangian domain valid for a general fluid, and in any foliation

 \rightarrow several possible formulations with different focusses (more or less intrinsic to the fluid) and levels of explicit dependence in the foliation behaviour

 \rightarrow the quantitative results will still depend on the (free) foliation choice in any case:

in concrete applications, a particular choice of hypersurfaces has to be made, based on physical relevance:

- fluid-orthogonal (for an irrotational fluid) ?
- constant rest-mass/energy density ?
- constant curvature ?
- statistical homogeneity ?
- synchronized fluid elements ?

THANK YOU FOR YOUR ATTENTION!