Introduction	Definition		Challenges	Conclusion
000000	00000	0000	0000	

Computational Challenges in Relativistic Cosmology

Vincent Reverdy

Department of Astronomy University of Illinois at Urbana-Champaign (UIUC)

July 4th, 2017

< 口 > < 同 >

A B M A B M

Inhomogeneous Cosmologies - Vincent Reverdy - Torun, Poland - July 2017

æ

Introduction	Definition		Challenges	Conclusion
000000	00000	0000	0000	

Classical Numerical Cosmology

2

イロン イヨン イヨン -

Introduction	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
The local U	niverse			

Inhomogeneous Cosmologies - Vincent Reverdy - Torun, Poland - July 2017

Inhomogeneous Cosmologies - Vincent Reverdy - Torun, Poland - July 2017

0000000	00000	0000	0000	000
Integration of	of geodesics			

Introduction	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Results				

2000 1500 *d_A* (in Mpc) 0001 Results • Homogeneous $\Lambda \in$ inhomogeneous RP at 1σ A less structured model is interpreted as more ACDM (reference) 500 ACDM structured when inhomogeneities are not taken into WCDM (reference) account WCDM Important effects when interpreting data **RPCDM** (reference) RPCDM 1 2 3 n Redshift z

Homogeneous and inhomogeneous angular diameter distances

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000

Defining Numerical Relativistic Cosmology

2

Where do we	want to go?	Defining the ideal sime	ulation	
0000000	00000	0000	0000	000
	Definition		Challenges	Conclusion

Let's imagine we have a yottascale (10^{24}) supercomputer: 1 billion times more powerful than today with 1 billion times more memory than today

э

 Introduction
 Definition
 Limitations
 Challenges
 Conclusion

 0000000
 ●0000
 0000
 0000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 00

Where do we want to go? Defining the ideal simulation

Let's imagine we have a yottascale (10^{24}) supercomputer: 1 billion times more powerful than today with 1 billion times more memory than today

What?

- Full GR: no background whatsoever
- Cosmological structure formation

 Introduction
 Definition
 Limitations
 Challenges
 Conclusion

 0000000
 ●00000
 0000
 0000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0

Where do we want to go? Defining the ideal simulation

Let's imagine we have a yottascale (10^{24}) supercomputer: 1 billion times more powerful than today with 1 billion times more memory than today

What?

- Full GR: no background whatsoever
- Cosmological structure formation

What size range?

- L_{min}: small galaxies?
- *L*_{max}: the Observable Universe?

 Introduction
 Definition
 Limitations
 Challenges
 Conclusion

 0000000
 •0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Where do we want to go? Defining the ideal simulation

Let's imagine we have a yottascale (10^{24}) supercomputer: 1 billion times more powerful than today with 1 billion times more memory than today

What?

- Full GR: no background whatsoever
- Cosmological structure formation

What size range?

- L_{min}: small galaxies?
- L_{max}: the Observable Universe?

What mass range?

- *M*_{min}: mass of small galaxies?
- *M*_{max}: mass of the Observable Universe?

< ロ > < 同 > < 回 > < 回 > < 回 > <

 Introduction
 Definition
 Limitations
 Challenges
 Conclusion

 0000000
 •0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Where do we want to go? Defining the ideal simulation

Let's imagine we have a yottascale (10^{24}) supercomputer: 1 billion times more powerful than today with 1 billion times more memory than today

What?

- Full GR: no background whatsoever
- Cosmological structure formation

What size range?

- L_{min}: small galaxies?
- L_{max}: the Observable Universe?

What mass range?

- *M*_{min}: mass of small galaxies?
- *M*_{max}: mass of the Observable Universe?

What time range?

- t_{beginning}: redshift of the CMB?
- t_{end}: current epoch?

э

< ロ > < 同 > < 回 > < 回 > .

 Introduction
 Definition
 Limitations
 Challenges
 Conclusion

 000000
 0000
 0000
 0000
 0000
 000

Where do we want to go? Defining the ideal simulation

Let's imagine we have a yottascale (10^{24}) supercomputer: 1 billion times more powerful than today with 1 billion times more memory than today

What?

- Full GR: no background whatsoever
- Cosmological structure formation

What size range?

- L_{min}: small galaxies?
- L_{max}: the Observable Universe?

What mass range?

- *M*_{min}: mass of small galaxies?
- *M*_{max}: mass of the Observable Universe?

What time range?

- t_{beginning}: redshift of the CMB?
- t_{end}: current epoch?

What physics?

- Pure gravity
- Hydrodynamics?
- Baryonic physics?
- Singularities and black holes?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Neutrinos?
- Magnetic fields?
- Pre-CMB physics?
- etc. . .

э

Introduction	Definition		Challenges	Conclusion
000000	0000	0000	0000	000
Why?				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

	Definition	Challenges	Conclusion
	0000		
Why?			

Compute the order of magnitude of the backreaction?

2

イロン イロン イヨン イヨン

	Definition	Challenges	Conclusion
	0000		
Why?			

- Compute the order of magnitude of the backreaction?
- Answer the backreaction conjecture?

æ

	Definition	Challenges	Conclusion
	0000		
Why?			

- Compute the order of magnitude of the backreaction?
- Answer the backreaction conjecture?
- Have more realistic simulations?

æ

Introduction	Definition	Challenges	Conclusion
	00000		
Why?			

- Compute the order of magnitude of the backreaction?
- Answer the backreaction conjecture?
- Have more realistic simulations?
- Have better virtual catalogs to prepare observational surveys?

Introduction	Definition	Challenges	Conclusion
	00000		
Why?			

- Compute the order of magnitude of the backreaction?
- Answer the backreaction conjecture?
- Have more realistic simulations?
- Have better virtual catalogs to prepare observational surveys?
- Better accuracy and precision in cosmological predictions?

Introduction	Definition	Challenges	Conclusion
	00000		
Why?			

- Compute the order of magnitude of the backreaction?
- Answer the backreaction conjecture?
- Have more realistic simulations?
- Have better virtual catalogs to prepare observational surveys?
- Better accuracy and precision in cosmological predictions?
- Numerical demonstration of classical cosmology?

Introduction	Definition	Challenges	Conclusion
	00000		
Why?			

- Compute the order of magnitude of the backreaction?
- Answer the backreaction conjecture?
- Have more realistic simulations?
- Have better virtual catalogs to prepare observational surveys?
- Better accuracy and precision in cosmological predictions?
- Numerical demonstration of classical cosmology?
- Understand the emergence of physics phenomena?

< 回 > < 回 > < 回 >

Introduction	Definition	Challenges	Conclusion
	00000		
Why?			

- Compute the order of magnitude of the backreaction?
- Answer the backreaction conjecture?
- Have more realistic simulations?
- Have better virtual catalogs to prepare observational surveys?
- Better accuracy and precision in cosmological predictions?
- Numerical demonstration of classical cosmology?
- Understand the emergence of physics phenomena?
- Anything else?

・ 同 ト ・ ヨ ト ・ ヨ ト

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Why more power	?			

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

	Definition	Challenges	Conclusion
	00000		
Why more power?	?		

2

イロン イロン イヨン イヨン

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Why more power?)			

More stuff: bigger, longer, larger

2

ヘロト ヘロト ヘヨト ヘヨト

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
Why more power?	?			

- More stuff: bigger, longer, larger
- More resolution: in space, in time, in mass

э

イロン イヨン イヨン イヨン

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
Why more power?	?			

- More stuff: bigger, longer, larger
- More resolution: in space, in time, in mass
- More simulations: exploration of parameter space, statistical accuracy

э

イロト 不得 トイヨト イヨト

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
Why more power?	?			

- More stuff: bigger, longer, larger
- More resolution: in space, in time, in mass
- More simulations: exploration of parameter space, statistical accuracy
- More physics: multiphysics code

< ロ > < 同 > < 三 > < 三 >

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
Why more power?	?			

- More stuff: bigger, longer, larger
- More resolution: in space, in time, in mass
- More simulations: exploration of parameter space, statistical accuracy
- More physics: multiphysics code

Will this really answer our questions?

э

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
Why more power?	?			

- More stuff: bigger, longer, larger
- More resolution: in space, in time, in mass
- More simulations: exploration of parameter space, statistical accuracy
- More physics: multiphysics code

Will this really answer our questions?

• More stuff \Rightarrow better evaluation of global quantities

э

< ロ > < 同 > < 三 > < 三 > 、

	Definition		Challenges	Conclusion	
0000000	00000	0000	0000	000	
Why more power?					

- More stuff: bigger, longer, larger
- More resolution: in space, in time, in mass
- More simulations: exploration of parameter space, statistical accuracy
- More physics: multiphysics code

Will this really answer our questions?

- \blacksquare More stuff \Rightarrow better evaluation of global quantities
- $\blacksquare More resolution \Rightarrow less numerical errors$

	Definition		Challenges	Conclusion	
	00000				
Why more power?					

- More stuff: bigger, longer, larger
- More resolution: in space, in time, in mass
- More simulations: exploration of parameter space, statistical accuracy
- More physics: multiphysics code

Will this really answer our questions?

- More stuff \Rightarrow better evaluation of global quantities
- More resolution ⇒ less numerical errors
- More simulations \Rightarrow better accuracy on statistical quantities

< ロ > < 同 > < 回 > < 回 > .

	Definition		Challenges	Conclusion	
	00000				
Why more power?					

- More stuff: bigger, longer, larger
- More resolution: in space, in time, in mass
- More simulations: exploration of parameter space, statistical accuracy
- More physics: multiphysics code

Will this really answer our questions?

- More stuff \Rightarrow better evaluation of global quantities
- More resolution ⇒ less numerical errors
- \blacksquare More simulations \Rightarrow better accuracy on statistical quantities
- More physics \Rightarrow more realistic (but less understanding)

< ロ > < 同 > < 回 > < 回 > .
	Definition	Challenges	Conclusion
	00000		
Why more power?	?		

Traditional answers: the philosophy of more

- More stuff: bigger, longer, larger
- More resolution: in space, in time, in mass
- More simulations: exploration of parameter space, statistical accuracy
- More physics: multiphysics code

Will this really answer our questions?

- More stuff \Rightarrow better evaluation of global quantities
- $\blacksquare More resolution \Rightarrow less numerical errors$
- More simulations \Rightarrow better accuracy on statistical quantities
- More physics \Rightarrow more realistic (but less understanding)

Does not really bring any new knowledge...

< ロ > < 同 > < 回 > < 回 > .

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
On realistic simi	ulations			

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

On realistic	simulations			
0000000	00000	0000	0000	000
	Definition		Challenges	Conclusion

- Increase the number of degrees of freedom
- Increased degeneracy
- Add dimensions in a parameter space with local extrema

э

イロト イロト イヨト イヨト

On realistic simulations				
0000000	00000	0000	0000	000
	Definition		Challenges	Conclusion

- Increase the number of degrees of freedom
- Increased degeneracy
- Add dimensions in a parameter space with local extrema

Reality vs correctness

- Mimicking reality does not provide any guarantee of correctness
- Proving correctness is difficult, and even more with multiphysics simulations
- Multiphysics increase confusion instead of explainability

On realistic simulations				
0000000	00000	0000	0000	000
	Definition		Challenges	Conclusion

- Increase the number of degrees of freedom
- Increased degeneracy
- Add dimensions in a parameter space with local extrema

Reality vs correctness

- Mimicking reality does not provide any guarantee of correctness
- Proving correctness is difficult, and even more with multiphysics simulations
- Multiphysics increase confusion instead of explainability

The role of simulations

- The goal of simulations is not to produce realistic results
- Producing realistic results is an optimization problem
- Neural networks can do it far better and way faster than most physical models

・ 同 ト ・ ヨ ト ・ ヨ ト

On realistic simulations				
0000000	00000	0000	0000	000
	Definition		Challenges	Conclusion

- Increase the number of degrees of freedom
- Increased degeneracy
- Add dimensions in a parameter space with local extrema

Reality vs correctness

- Mimicking reality does not provide any guarantee of correctness
- Proving correctness is difficult, and even more with multiphysics simulations
- Multiphysics increase confusion instead of explainability

The role of simulations

- The goal of simulations is not to produce realistic results
- Producing realistic results is an optimization problem
- Neural networks can do it far better and way faster than most physical models

(Personal) conclusion

Simulations are not about the result, they are about the process

< ロ > < 回 > < 回 > < 回 > < 回 >

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
Less is more				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Less is more				

- More stuff
- More resolution
- More simulations
- More physics

æ

イロン イロン イヨン イヨン

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Less is more				

- More stuff
- More resolution
- More simulations
- More physics

The philosophy of less

2

イロン イ団 と イヨン イヨン

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Less is more				

- More stuff
- More resolution
- More simulations
- More physics

The philosophy of less

"Less" physics: start from more fundamental equations

э

イロン イロン イヨン イヨン

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Less is more				

- More stuff
- More resolution
- More simulations
- More physics

The philosophy of less

- "Less" physics: start from more fundamental equations
- Less approximations

э

イロン イヨン イヨン イヨン

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Less is more				

- More stuff
- More resolution
- More simulations
- More physics

The philosophy of less

- "Less" physics: start from more fundamental equations
- Less approximations
- Lower the number of degrees of freedom

э

イロト イロト イヨト イヨト

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Less is more				

- More stuff
- More resolution
- More simulations
- More physics

The philosophy of less

- "Less" physics: start from more fundamental equations
- Less approximations
- Lower the number of degrees of freedom
- Improved correctness

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Less is more				

- More stuff
- More resolution
- More simulations
- More physics

The philosophy of less

- "Less" physics: start from more fundamental equations
- Less approximations
- Lower the number of degrees of freedom
- Improved correctness
- More generic

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Less is more				

- More stuff
- More resolution
- More simulations
- More physics

The philosophy of less

- "Less" physics: start from more fundamental equations
- Less approximations
- Lower the number of degrees of freedom
- Improved correctness
- More generic
- Understanding emergence

イロト イボト イヨト イヨト

	Definition	Limitations	Challenges	Conclusion
000000	00000	0000	0000	

Current Limitations in Numerical Relativistic Cosmology

э

イロト イポト イヨト イヨト

	Definition	Limitations	Challenges	Conclusion
0000000	00000	0000	0000	000
What do we	have? What do	we need?		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

	Definition	Limitations	Challenges	Conclusion
0000000	00000	0000	0000	000
What do we	have? What do	we need?		

▲□ > ▲圖 > ▲ 臣 > ▲臣 > □ 臣 = の Q @

	Definition	Limitations	Challenges	Conclusion
000000	00000	0000	0000	000
What do we have	e? What do we ne	eed?		

• The fundamental physics is known: $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

2

・ロト ・回ト ・ヨト ・ヨト

	Definition	Limitations	Challenges	Conclusion
0000000	00000	0000	0000	000
What do we ha	ve? What do	we need?		

- The fundamental physics is known: $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$
- The numerical methods are known

2

イロン イヨン イヨン -

	Definition	Limitations	Challenges	Conclusion
0000000	00000	0000	0000	000
What do we ha	ve? What do	we need?		

- The fundamental physics is known: $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$
- The numerical methods are known
- The algorithms are known

2

イロン イロン イヨン イヨン

	Definition	Limitations	Challenges	Conclusion
000000	00000	0000	0000	000
What do we have	? What do we ne	eed?		

- The fundamental physics is known: $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$
- The numerical methods are known
- The algorithms are known
- Parallelization techniques are known

э

イロト イヨト イヨト イヨト

	Definition	Limitations	Challenges	Conclusion
000000	00000	0000	0000	000
What do we have	? What do we ne	eed?		

- The fundamental physics is known: $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$
- The numerical methods are known
- The algorithms are known
- Parallelization techniques are known
- Implementation is a technical detail

イロト イポト イヨト イヨト

	Definition	Limitations	Challenges	Conclusion
000000	00000	0000	0000	000
What do we have	? What do we ne	eed?		

- The fundamental physics is known: $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$
- The numerical methods are known
- The algorithms are known
- Parallelization techniques are known
- Implementation is a technical detail

What we do need

 \Rightarrow Therefore it is a problem of computational power

< ロ > < 同 > < 三 > < 三 >

	Definition	Limitations	Challenges	Conclusion
000000	00000	0000	0000	000
Computational p	ower			

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Introduction	Definition	Limitations	Challenges	Conclusion
000000	00000	0000	0000	000
Computational po	ower			

Present and future

- We already have petascale supercomputers (10^{15} FLOPS)
- Exascale supercomputers are coming (10¹⁸ FLOPS)

э

イロト 不得 トイヨト イヨト

	Definition	Limitations	Challenges	Conclusion
		0000		
Computatio	nal power			

Present and future

- We already have petascale supercomputers (10¹⁵ FLOPS)
- Exascale supercomputers are coming (10¹⁸ FLOPS)

A lot of room at the bottom

- A lot of time in current simulation codes is spend doing nothing
- Lot of opportunity for optimizations at the bottom of computing
- Computer science, computer architecture, compiler, programming languages

くぼ ト く ヨ ト く ヨ ト

	Definition	Limitations	Challenges	Conclusion
		0000		
Computatio	onal power			

Present and future

- We already have petascale supercomputers (10¹⁵ FLOPS)
- Exascale supercomputers are coming (10¹⁸ FLOPS)

A lot of room at the bottom

- A lot of time in current simulation codes is spend doing nothing
- Lot of opportunity for optimizations at the bottom of computing
- Computer science, computer architecture, compiler, programming languages

Applications				
	High leve	l libraries		
Wrappers and bindings Python R Java				
Optimized libraries	Interpreters	Python, R)	Virtual machines (JVM)	
Compile	d, native, low lev	vel languages (C	, C++)	
Compilers, mostly written in C and C++ (GCC, LLVM)				
M	Machine layer, assembly instructions			

Propagation of optimizations

Softwares are built as stacks. Low-level optimizations can be propagated back to the higher levels while ensuring maximum performances and genericity.

э

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Benchmark of standard algorithms on vector
bool> vs their bit_iterator specialization (logarithmic scale) [preliminary results]

i7-2630QM @ 2.00GHz, Linux 3.13.0-74-generic, g++ 5.3.0, -O3, -march=native, stdlibc++ 20151204, credit: Vincent Reverdy

イロト イボト イヨト イヨト

Benchmark of standard algorithms on vector<bool> vs their bit_iterator specialization (linear scale) [preliminary results]

Average time for 100 benchmarks with a vector size of 100.000.000 bits (speedups are provided at the top of each column)

i7-2630QM @ 2.00GHz, Linux 3.13.0-74-generic, g++ 5.3.0, -O3, -march=native, stdlibc++ 20151204, credit: Vincent Reverdy $1906 \times$ $461 \times$ $334 \times$ $31 \times$ $389 \times$ $3359 \times$ $300 \times$

イロト イボト イヨト イヨト

	Definition		Challenges	Conclusion
000000	00000	0000	0000	

Challenges in Numerical Relativistic Cosmology

æ

イロト イポト イヨト イヨト

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
Upcoming chal	lenge: data stri	uctures		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

	Definition		Challenges	Conclusion
0000000	00000	0000	•000	000

Upcoming challenge: data structures

DATA TRANSFER TIMINGS (CREDITS: GOOGLE RESEARCH)				
Operation	Approx. time	Remark		
L1 cache reference	0.5 ns			
One cycle on a 3 GHz processor	1 ns			
Branch mispredict	5 ns			
L2 cache reference	7 ns	$14 \times L1$ cache		
Mutex lock or unlock	25 ns			
Main memory reference	100 ns	$200 \times L1$ cache		
Send 1 KB over a 1 Gbps network	$10\mu s$			
Read 1 MB sequentially from main memory	$250 \mu s$			
Round trip within the same datacenter	$500 \mu s$			
Read 1 MB sequentially from a SSD	1 ms	4× memory		
Disk seek	10 ms	$20 \times datacenter RT$		
Read 1 MB sequentially from disk	20 ms	$80 \times$ memory		
${\sf Send} \ {\sf packet} \ {\sf California} {\rightarrow} {\sf Netherlands} {\rightarrow} {\sf California}$	150 ms			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

	Definition		Challenges	Conclusion
000000	00000	0000	•000	000

Upcoming challenge: data structures

Data transfer timings (Credits: Google Research)				
Operation	Approx. time	Remark		
L1 cache reference	0.5 ns			
One cycle on a 3 GHz processor	1 ns			
Branch mispredict	5 ns			
L2 cache reference	7 ns	$14 \times L1$ cache		
Mutex lock or unlock	25 ns			
Main memory reference	100 ns	$200 \times L1$ cache		
Send 1 KB over a 1 Gbps network	$10 \mu s$			
Read 1 MB sequentially from main memory	250 μs			
Round trip within the same datacenter	500 μs			
Read 1MB sequentially from a SSD	1 ms	4× memory		
Disk seek	10 ms	20 imes datacenter RT		
Read 1 MB sequentially from disk	20 ms	$80 \times$ memory		
${\sf Send} \ {\sf packet} \ {\sf California} {\rightarrow} {\sf Netherlands} {\rightarrow} {\sf California}$	150 ms			

Consequences

Most of the time, pure computing time is not the problem anymore

Most of the time, data transfer is the problem:
[disk] → [memory] → [cache]
[cache] ← [node memory] ↔ [node memory] → [cache]

Once everything is in cache, computations are fast

 \Rightarrow Trees and graphs for AMR

э

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
Challenges ir	n computational :	sciences		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Challenges in computational sciences				
			0000	
	Definition		Challenges	Conclusion

A history of challenges
Challenges in computational sciences						
0000000	00000	0000	0000	000		
	Definition		Challenges	Conclusion		

Formalisms

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Challenges in computational sciences						
0000000	00000	0000	0000	000		
	Definition		Challenges	Conclusion		

- 1 Formalisms
- 2 Computational power

2

イロン イロン イヨン イヨン

	Definition		Challenges	Conclusion
			0000	
Challenges i				

- 1 Formalisms
- 2 Computational power
- 3 Algorithms

2

イロン イ団 と イヨン イヨン

	Definition		Challenges	Conclusion
			0000	
Challenges i				

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]

2

イロン イヨン イヨン イヨン

Challongos in	computational	scioncos		
			0000	
	Definition		Challenges	Conclusion

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]
- **5** Data structures [upcoming]

æ

イロト イヨト イヨト イヨト

Challongos in	computational	scioncos		
			0000	
	Definition		Challenges	Conclusion

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]
- **5** Data structures [upcoming]
- 6 Code complexity [future]

э

イロト イボト イヨト イヨト

	Definition		Challenges	Conclusion
			0000	
Challenges i				

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]
- **5** Data structures [upcoming]
- 6 Code complexity [future]

A stack of challenges

э

イロト イポト イヨト イヨト

	Definition		Challenges	Conclusion
			0000	
Challenges in	computational	sciences		

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]
- Data structures [upcoming]
- 6 Code complexity [future]

A stack of challenges

Type theory and category theory [theoretical computer science]

< ロ > < 同 > < 三 > < 三 >

Challenges in	n computational	sciences		
			0000	
	Definition		Challenges	Conclusion

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]
- Data structures [upcoming]
- 6 Code complexity [future]

A stack of challenges

- Type theory and category theory [theoretical computer science]
- Programming languages and compilers [computer science]

▶ ∢ ∃ ▶

Challenges in	n computational	sciences		
			0000	
	Definition		Challenges	Conclusion

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]
- Data structures [upcoming]
- 6 Code complexity [future]

- Type theory and category theory [theoretical computer science]
- 2 Programming languages and compilers [computer science]
- 3 Data organization [computer science, computer engineering]

Challenges in	n computational	sciences		
			0000	
	Definition		Challenges	Conclusion

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]
- Data structures [upcoming]
- 6 Code complexity [future]

- Type theory and category theory [theoretical computer science]
- 2 Programming languages and compilers [computer science]
- 3 Data organization [computer science, computer engineering]
- Parallelization [computer science, computer engineering]

Introduction	Definition	Limitations	Challenges	Conclusion		
0000000	00000	0000	0000	000		
Challenges in computational sciences						

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]
- Data structures [upcoming]
- 6 Code complexity [future]

- Type theory and category theory [theoretical computer science]
- 2 Programming languages and compilers [computer science]
- 3 Data organization [computer science, computer engineering]
- Parallelization [computer science, computer engineering]
- 5 Numerical methods [applied mathematics]

Introduction	Definition	Limitations	Challenges	Conclusion
0000000	00000	0000	0000	000
Challenges in computational sciences				

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]
- Data structures [upcoming]
- 6 Code complexity [future]

- Type theory and category theory [theoretical computer science]
- 2 Programming languages and compilers [computer science]
- 3 Data organization [computer science, computer engineering]
- Parallelization [computer science, computer engineering]
- 5 Numerical methods [applied mathematics]
- 6 Solvers [applied mathematics]

Introduction	Definition	Limitations	Challenges	Conclusion
0000000	00000	0000	0000	000
Challenges in computational sciences				

- Formalisms
- 2 Computational power
- 3 Algorithms
- 4 Parallelism [present]
- Data structures [upcoming]
- 6 Code complexity [future]

A stack of challenges

- Type theory and category theory [theoretical computer science]
- 2 Programming languages and compilers [computer science]
- 3 Data organization [computer science, computer engineering]
- Parallelization [computer science, computer engineering]
- 5 Numerical methods [applied mathematics]
- 6 Solvers [applied mathematics]
- Physics equations [physics]

86

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Code complexity				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
Code complexity				

Implementation and algorithms are technical details.

2

イロン イ団 と イヨン イヨン

	Definition	Challenges	Conclusion
		0000	
Code complexity			

Implementation and algorithms are technical details.

The computer scientist's view

The physics is a technical detail.

э

イロト イロト イヨト イヨト

Introduction	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Code complexity				

Implementation and algorithms are technical details.

The computer scientist's view

The physics is a technical detail.

Current approaches

э

イロト イヨト イヨト イヨト

Introduction	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Code complexity				

Implementation and algorithms are technical details.

The computer scientist's view

The physics is a technical detail.

Current approaches

We tend to do work that should be done by computers

イロト イボト イヨト イヨト

Introduction	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Code complexity				

Implementation and algorithms are technical details.

The computer scientist's view

The physics is a technical detail.

Current approaches

- We tend to do work that should be done by computers
- We bend our physics to make it fit instead of bending languages and compilers

< ロ > < 同 > < 三 > < 三 >

Introduction	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Code complexity				

Implementation and algorithms are technical details.

The computer scientist's view

The physics is a technical detail.

Current approaches

- We tend to do work that should be done by computers
- We bend our physics to make it fit instead of bending languages and compilers
- Compilers can derive equations and do mathematical optimization

< ロ > < 同 > < 三 > < 三 >

Introduction	Definition	Limitations	Challenges	Conclusion
Code complexity				000

Implementation and algorithms are technical details.

The computer scientist's view

The physics is a technical detail.

Current approaches

- We tend to do work that should be done by computers
- We bend our physics to make it fit instead of bending languages and compilers
- Compilers can derive equations and do mathematical optimization

What is a programming language?

- S: a set of equations to solve
- T: a number (sequence of 0 and 1) to serve as input of a Turing machine
- f: the morphism computed by the compiler

94

Introduction	Definition	Limitations	Challenges	Conclusion
Code complexity				000

Implementation and algorithms are technical details.

The computer scientist's view

The physics is a technical detail.

Current approaches

- We tend to do work that should be done by computers
- We bend our physics to make it fit instead of bending languages and compilers
- Compilers can derive equations and do mathematical optimization

What is a programming language?

- S: a set of equations to solve
- T: a number (sequence of 0 and 1) to serve as input of a Turing machine
- f: the morphism computed by the compiler
- Traditional approach: modifying $S \Rightarrow but f$ can be modified too

3

イロン イロン イヨン イヨン

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
A type theory	/category theo	ry problem		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

A type theor	ry/category theor	y problem		
0000000	00000	0000	0000	000
Introduction	Definition		Challenges	Conclusion

▲□ > ▲圖 > ▲ 臣 > ▲臣 > □ 臣 = の Q @

A type theor	v/category theor	v problem		
0000000	00000	0000	0000	000
Introduction	Definition		Challenges	Conclusion

Parallelism, numerical methods, data structures and physics are all mixed together

æ

イロト イヨト イヨト イヨト

A type theory	v/category theor	v problem		
0000000	00000	0000	0000	000
Introduction	Definition		Challenges	Conclusion

- Parallelism, numerical methods, data structures and physics are all mixed together
- Combinatorial explosions of complexity

э

< ロ > < 回 > < 回 > < 回 > < 回 >

A type theory	v/category theor	v problem		
0000000	00000	0000	0000	000
Introduction	Definition		Challenges	Conclusion

- Parallelism, numerical methods, data structures and physics are all mixed together
- Combinatorial explosions of complexity
- Everything but a technical detail

イロト イポト イヨト イヨト

A type theory	/category theor	ry problem		
0000000	00000	0000	0000	000
Introduction	Definition		Challenges	Conclusion

- Parallelism, numerical methods, data structures and physics are all mixed together
- Combinatorial explosions of complexity
- Everything but a technical detail
- Boils down to a type theory/category theory problem

イロト イポト イヨト イヨト

A type theory	/category theo	ry problem		
0000000	00000	0000	0000	000
Introduction	Definition		Challenges	Conclusion

- Parallelism, numerical methods, data structures and physics are all mixed together
- Combinatorial explosions of complexity
- Everything but a technical detail
- Boils down to a type theory/category theory problem
- Finding the right abstractions is mostly language independent

< ロ > < 同 > < 三 > < 三 >

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣。

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	000
Conclusion				

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Conclusion				

Full GR on cosmological scales

2

イロン イロン イヨン イヨン

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Conclusion				

- Full GR on cosmological scales
- No metric background

2

イロン イヨン イヨン イヨン

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	•00
Conclusion				

- Full GR on cosmological scales
- No metric background
- Should solve $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$ for a given distribution of mass...and that's it

2

イロン イヨン イヨン イヨン

	Definition	Challenges	Conclusion
			000
Conclusion			

- Full GR on cosmological scales
- No metric background
- Should solve $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$ for a given distribution of mass... and that's it

Why?

2

イロン イ団 と イヨン イヨン
	Definition		Challenges	Conclusion
0000000	00000	0000	0000	•00
Conclusion				

- Full GR on cosmological scales
- No metric background
- Should solve $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$ for a given distribution of mass... and that's it

Why?

To understand the emergence of cosmology from numerical relativity

э

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	•00
Conclusion				

- Full GR on cosmological scales
- No metric background
- Should solve $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$ for a given distribution of mass... and that's it

Why?

- To understand the emergence of cosmology from numerical relativity
- Regardless of backreaction effects

э

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	•00
Conclusion				

- Full GR on cosmological scales
- No metric background
- Should solve $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$ for a given distribution of mass... and that's it

Why?

- To understand the emergence of cosmology from numerical relativity
- Regardless of backreaction effects

Challenges

э

イロト 不得 トイヨト イヨト

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	•00
Conclusion				

- Full GR on cosmological scales
- No metric background
- Should solve $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$ for a given distribution of mass... and that's it

Why?

- To understand the emergence of cosmology from numerical relativity
- Regardless of backreaction effects

Challenges

Computational power is a no-problem

3

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	•00
Conclusion				

- Full GR on cosmological scales
- No metric background
- Should solve $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$ for a given distribution of mass... and that's it

Why?

- To understand the emergence of cosmology from numerical relativity
- Regardless of backreaction effects

Challenges

- Computational power is a no-problem
- Data movement is a rising bottleneck

э

イロト 不得 トイヨト イヨト

	Definition		Challenges	Conclusion
0000000	00000	0000	0000	•00
Conclusion				

- Full GR on cosmological scales
- No metric background
- Should solve $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$ for a given distribution of mass... and that's it

Why?

- To understand the emergence of cosmology from numerical relativity
- Regardless of backreaction effects

Challenges

- Computational power is a no-problem
- Data movement is a rising bottleneck
- Code complexity will come after

э

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Conclusion				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

	Definition	Challenges	Conclusion
			000
Conclusion			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Conclusion				

The main problem of computing is moving from parallelism to data structures

æ

Introduction	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Conclusion				

- The main problem of computing is moving from parallelism to data structures
- There is a lot of room at the bottom of computing: low-level optimizations

э

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Conclusion				

- The main problem of computing is moving from parallelism to data structures
- There is a lot of room at the bottom of computing: low-level optimizations
- Code complexity boils down to a type theory problem: computer scientists needed

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Conclusion				

- The main problem of computing is moving from parallelism to data structures
- There is a lot of room at the bottom of computing: low-level optimizations
- Code complexity boils down to a type theory problem: computer scientists needed
- For a well-designed code, physics should almost be a technical detail

A B M A B M

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000
Conclusion				

- The main problem of computing is moving from parallelism to data structures
- There is a lot of room at the bottom of computing: low-level optimizations
- Code complexity boils down to a type theory problem: computer scientists needed
- For a well-designed code, physics should almost be a technical detail

On simplicity

< ロ > < 同 > < 三 > < 三 >

	Definition	Challenges	Conclusion
			000
Conclusion			

- The main problem of computing is moving from parallelism to data structures
- There is a lot of room at the bottom of computing: low-level optimizations
- Code complexity boils down to a type theory problem: computer scientists needed
- For a well-designed code, physics should almost be a technical detail

On simplicity

Doing Full GR cosmological simulations is aiming for less

< ロ > < 同 > < 三 > < 三 >

	Definition	Challenges	Conclusion
			000
Conclusion			

- The main problem of computing is moving from parallelism to data structures
- There is a lot of room at the bottom of computing: low-level optimizations
- Code complexity boils down to a type theory problem: computer scientists needed
- For a well-designed code, physics should almost be a technical detail

On simplicity

- Doing Full GR cosmological simulations is aiming for less
- ... and less is more: more genericity, more correctness, more explainability
- ... to understand the emergence of cosmology from numerical relativity

・ 同 ト ・ ヨ ト ・ ヨ ト

	Definition	Challenges	Conclusion
			000
Conclusion			

- The main problem of computing is moving from parallelism to data structures
- There is a lot of room at the bottom of computing: low-level optimizations
- Code complexity boils down to a type theory problem: computer scientists needed
- For a well-designed code, physics should almost be a technical detail

On simplicity

- Doing Full GR cosmological simulations is aiming for less
- ... and less is more: more genericity, more correctness, more explainability
- ... to understand the emergence of cosmology from numerical relativity

Conclusion

"Simplicity is the final achievement. After one has played a vast quantity of notes and more notes, it is simplicity that emerges as the crowning reward of art." *Fryderyk Chopin*

< ロ > < 同 > < 回 > < 回 > < 回 > <

	Definition		Challenges	Conclusion
000000	00000	0000	0000	000

Thank you for your attention

Any question?

For collaborations: vince.rev@gmail.com

2