Example of an inhomogeneous cosmological model inspired by the perturbation theory

SZYMON SIKORA Krzysztof Głód

Astronomical Observatory, Jagiellonian University, Kraków Copernicus Center for Interdisciplinary Studies, Kraków

Inhomogeneous Cosmologies, Toruń 2-7 July 2017

Motivation:

We were looking for a simple inhomogeneous cosmological model, with a metric given explicitly, for which one can apply the Green-Wald scheme and Buchert averaging technique simultanously.

The metric

$$g_{\mu
u} = g^{(0)}_{\mu \,
u} + \lambda \, h_{\mu \,
u}$$

The background is the Einstein-de Sitter. In the cartesian coordinates (t, x, y, z):

$$g^{(0)}_{\mu
u} = {
m diag}(-1, a^2, a^2, a^2), \quad a(t) = \mathcal{C} \, t^{2/3}, \quad \mathcal{C} = {
m const.}$$

The perturbation has the following form:

$$h_{00} = 0, \quad h_{i0} = 0, \quad h_{ij} = a^2 \, \left(C_{,ij} - rac{1}{3} \delta_{ij} (C_{,xx} + C_{,yy} + C_{,zz}) + \delta_{ij} \, D
ight)$$

$$\overline{C(t,x,y,z)} = -rac{\mathcal{C}^3 \lambda}{81t} igg(rac{x^2}{16} + rac{y^2}{16} + rac{z^2}{16} + rac{1}{32B^2} \cos{(2Bx)} + rac{1}{32B^2} \cos{(2By)} + rac{1}{32B^2} \cos{(2Bz)}igg)$$

$$D(t,x,y,z) = -rac{\mathcal{C}^3 \lambda}{243t} \left(rac{1}{8}(-\cos{(2Bx)}+1) + rac{1}{8}(-\cos{(2By)}+1) + rac{1}{8}(-\cos{(2Bz)}+1)
ight)$$

The metric

$$g_{\mu
u} = egin{bmatrix} -1 & 0 & 0 & 0 & 0 \ 0 & \mathcal{C}^2 \sqrt[3]{t} \left(-rac{\mathcal{C}^3 \lambda}{324} \sin^2{(Bx)} + t
ight) & 0 & 0 \ 0 & 0 & \mathcal{C}^2 \sqrt[3]{t} \left(-rac{\mathcal{C}^3 \lambda}{324} \sin^2{(By)} + t
ight) & 0 \ 0 & 0 & \mathcal{C}^2 \sqrt[3]{t} \left(-rac{\mathcal{C}^3 \lambda}{324} \sin^2{(Bz)} + t
ight] \end{pmatrix}$$

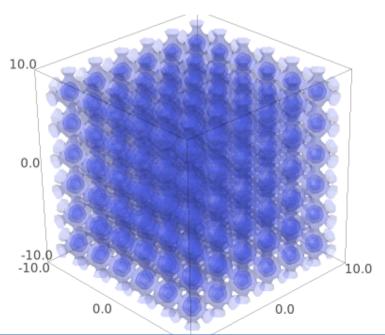
The constant C is determined by the condition $a(t_0) = 1$, where t_0 is the age of the Einstein-de Sitter universe with a given H_0

The energy-momentum tensor

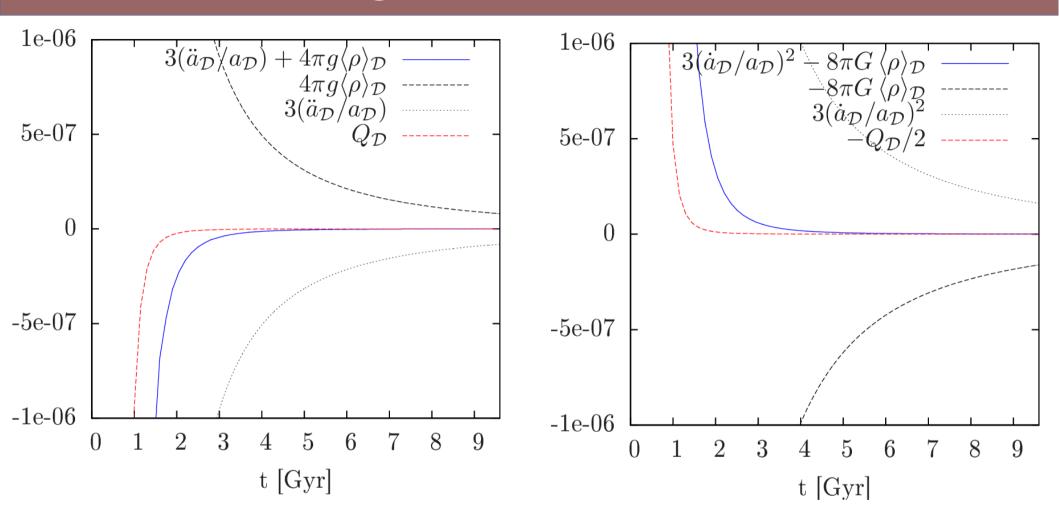
$$G_{\mu
u} = G_{\mu
u}^{(0)} + \lambda \, G_{\mu
u}^{(1)} + \dots$$
 $T_{\mu
u} = T_{\mu
u}^{(0)} + \lambda \, T_{\mu
u}^{(1)} + \dots$ $T_{\mu
u}^{(k)} = G_{\mu
u}^{(k)} / 8 \pi$

$$T_{\mu
u}^{(0)} =
ho^{(0)} \, U_{\mu} \, U_{
u}, \quad U^{\mu} = (1,0,0,0), \quad
ho^{(0)} = rac{4}{3} t^{-2}$$

$$T_{\mu
u}^{(1)} =
ho^{(1)} \, U_{\mu} \, U_{
u}, \quad
ho(1) = \; rac{1}{3888 \pi t^3} ig(\mathcal{C}^3 \sin^2{(Bx)} + \mathcal{C}^3 \sin^2{(By)} + \mathcal{C}^3 \sin^2{(Bz)} ig)$$

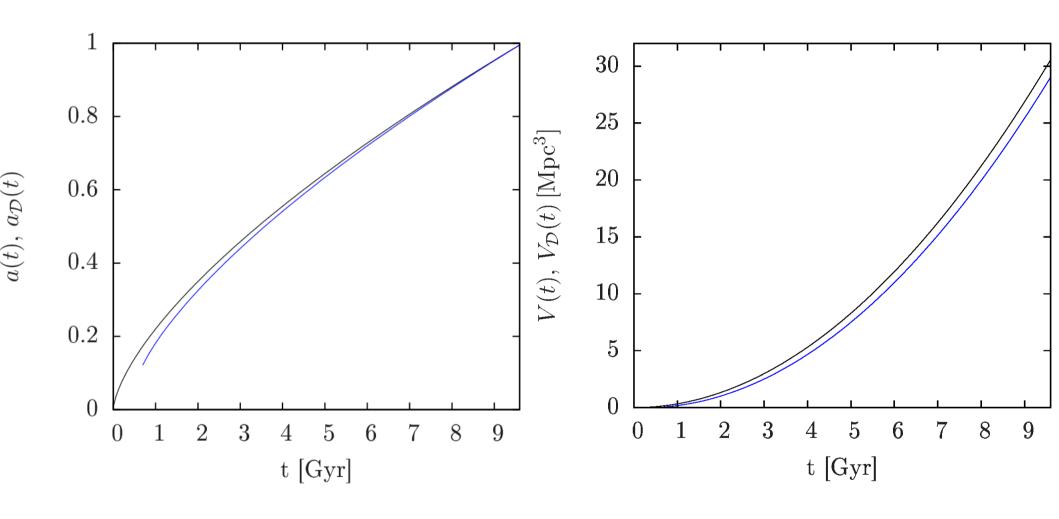


When the higher order terms are small?

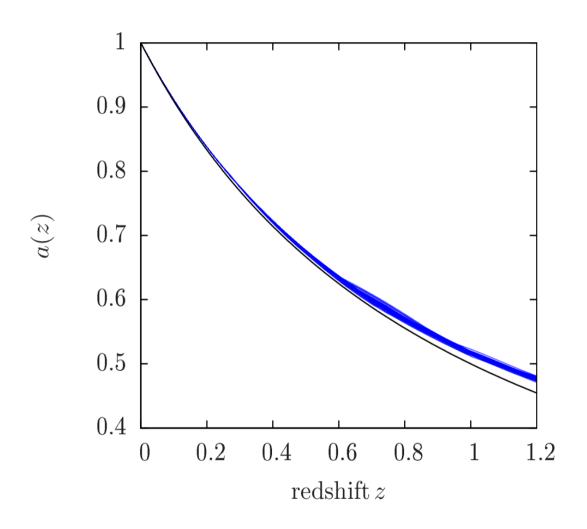


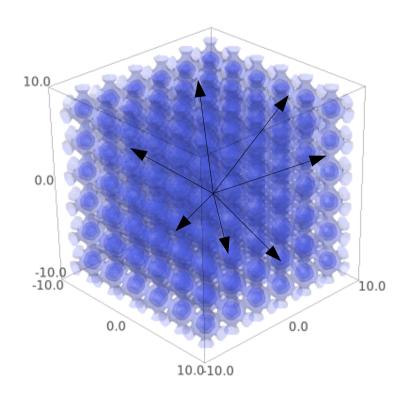
We fixed the scale parameter B=1, and the amplitude λ so that $\langle \rho^{(0)} \rangle_{\mathcal{D}}$ is 0.04 in critical units

Effective scale factor and the volume of the elementary cell

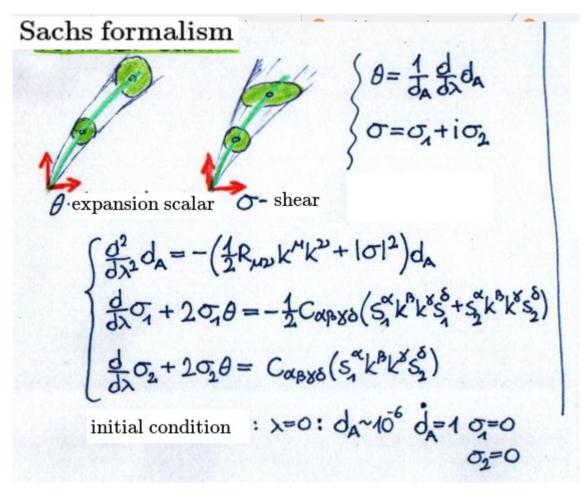


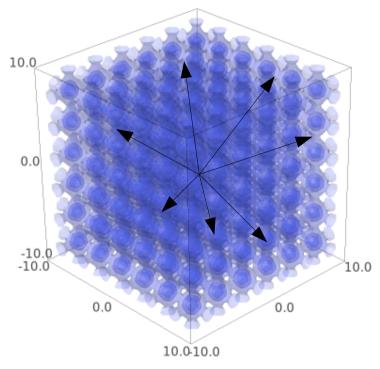
The null geodesics



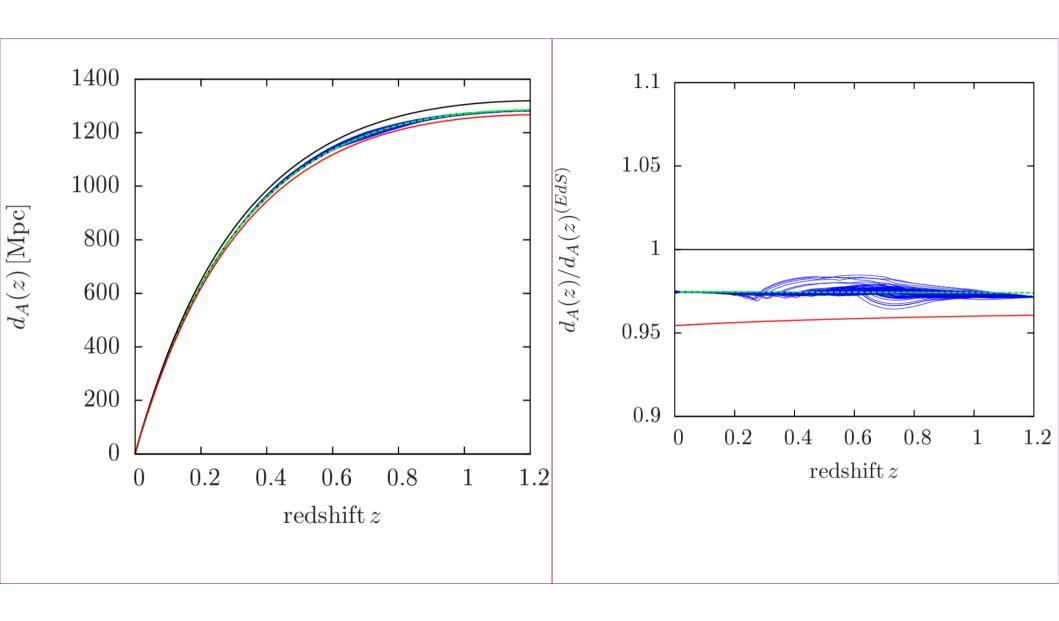


The angular diameter distance





The angular diameter distance



Thank you for your attention.

This work was made possible through the support of a grant from the **John Templeton Foundation**

Symbolic calculations has been done with the help of the CAS: Maxima and Mathematica:

