Timescape: observations, challenges

David L. Wiltshire (University of Canterbury, NZ)

DLW: New J. Phys. 9 (2007) 377 Phys. Rev. Lett. 99 (2007) 251101 Phys. Rev. D78 (2008) 084032 Phys. Rev. D80 (2009) 123512 Class. Quan. Grav. 28 (2011) 164006 B.M. Leith, S.C.C. Ng & DLW: ApJ 672 (2008) L91 P.R. Smale & DLW, MNRAS 413 (2011) 367 P.R. Smale, MNRAS 418 (2011) 2779 J.A.G. Duley, M.A. Nazer & DLW: Class. Quan. Grav. 30 (2013) 175006 M.A. Nazer & DLW: Phys. Rev. D91 (2015) 063519

L.H. Dam. A. Heinesen & DLW: arXiv:1706.07236

Lecture Notes: arXiv:1311.3787

Outline of talk

What is dark energy?: Dark energy is a misidentification of gradients in quasilocal gravitational energy in the geometry of a complex evolving structure of matter inhomogeneities

- Conceptual basis
- Present and future tests of timescape cosmology:
 - Supernovae, BAO, CMB, ...
 - Clarkson-Bassett-Lu test, redshift-time drift, ...
- Frontiers:
 - relativistic Lagrangian perturbation theory

Cosmic web: typical structures

- Galaxy clusters, 2 10 h⁻¹Mpc, form filaments and sheets or "walls" that thread and surround voids
- Universe is void dominated (60–80%) by volume, with distribution peaked at a particular scale (40% of total volume):

Survey	Void diameter	Density contrast
PSCz	$(29.8 \pm 3.5)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.92 \pm 0.03$
UZC	$(29.2 \pm 2.7)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.96 \pm 0.01$
2dF NGP	$(29.8 \pm 5.3)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.94 \pm 0.02$
2dF SGP	$(31.2 \pm 5.3)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.94 \pm 0.02$

Dominant void statistics in the Point Source Catalogue Survey (PSCz), the Updated Zwicky Catalogue (UZC), and the 2 degree Field Survey (2dF) North Galactic Pole (NGP) and South Galactic Pole (SGP), (Hoyle and Vogeley 2002,2004). More recent results of Pan et al. (2011) using SDSS Data Release 7 similar.

Statistical homogeneity scale (SHS)

- Modulo debate (SDSS Hogg et al 2005, Sylos Labini et al 2009; WiggleZ Scrimgeour et al, 2012), some notion of statistical homogeneity reached on 70–100 h⁻¹Mpc scales based on 2–point galaxy correlation function
- ▲ Also observe $\delta \rho / \rho \sim 0.07$ on scales $\gtrsim 100 h^{-1}$ Mpc (bounded) in largest survey volumes; no evidence yet for $\langle \delta \rho / \rho \rangle_{\mathcal{D}} \rightarrow \epsilon \ll 1$ as $vol(\mathcal{D}) \rightarrow \infty$
- BAO scale close to SHS; in galaxy clustering BAO scale determination is treated in near linear regime in Λ CDM
- No direct evidence for FLRW spatial geometry below SHS (although assumed, e.g., defining boost of Local Group wrt CMB rest frame)

What is a cosmological particle (dust)?

- In FLRW one takes observers "comoving with the dust"
- Traditionally galaxies were regarded as dust. However,
 - Galaxies, clusters not homogeneously distributed today
 - Dust particles should have (on average) invariant masses over the timescale of the problem
- Must coarse-grain over expanding fluid elements larger than the largest typical structures [voids of diameter $30 h^{-1}$ Mpc with $\delta_{\rho} \sim -0.95$ are $\gtrsim 40\%$ of z = 0 universe]

$$\begin{array}{c} g_{\mu\nu}^{\text{stellar}} \to g_{\mu\nu}^{\text{galaxy}} \to g_{\mu\nu}^{\text{cluster}} \to g_{\mu\nu}^{\text{wall}} \\ \vdots \\ g_{\mu\nu}^{\text{void}} \end{array} \right\} \to g_{\mu\nu}^{\text{universe}}$$

SHS average cell...

- Need to consider relative position of observers over scales of tens of Mpc over which $\delta \rho / \rho \sim -1$.
- Gradients in spatial curvature and gravitational energy can lead to calibration differences between rulers & clocks of bound structures and volume average

The Copernican principle

- Retain Copernican Principle we are at an average position for observers in a galaxy
- Observers in bound systems are not at a volume average position in freely expanding space
- By Copernican principle other average observers should see an isotropic CMB
- BUT nothing in theory, principle nor observation demands that such observers measure the same mean CMB temperature nor the same angular scales in the CMB anisotropies
- Average mass environment (galaxy) can differ significantly from volume—average environment (void)

Relative volume deceleration...

• Two fluids, 4-velocities U^{μ} , \tilde{U}^{μ} , $U^{\mu}S_{\mu} = 0$, $\tilde{U}^{\mu}\tilde{S}_{\mu} = 0$, relative tilt $\gamma = (1 - \beta^2)^{-1/2}$, $\beta \equiv v/c$),

$$U^{\mu} = \gamma (\tilde{U}^{\mu} + \beta \tilde{S}^{\mu}), \qquad S^{\mu} = \gamma (\tilde{S}^{\mu} + \beta U^{\mu})$$

- Integrate on compact spherical boundary average tilt $\langle \gamma \rangle$ time derivative relative volume deceleration.
- Integrated relative clock rate drift.

Cosmological Equivalence Principle

In cosmological averages it is always possible to choose a suitably defined spacetime region, the cosmological inertial region, on whose boundary average motions (timelike and null) can be described by geodesics in a geometry which is Minkowski up to some time-dependent conformal transformation,

$$\mathrm{d}s_{\mathrm{CIR}}^2 = a^2(\eta) \left[-\mathrm{d}\eta^2 + \mathrm{d}r^2 + r^2\mathrm{d}\Omega^2 \right],$$

- Defines Cosmological Inertial Region (CIR) in which regionally isotropic volume expansion is equivalent to a velocity in special relativity
- Such velocities integrated on a bounding 2-sphere define *"kinetic energy of expansion"*: globally it has gradients

Finite infinity

- Define *finite infinity*, "*fi*" as boundary to *connected* region in which *average expansion* vanishes $\langle \theta \rangle = 0$ with $\theta > 0$ outside. [NOT global cosmological $\langle \rangle$ here]
- Shape of *fi* boundary irrelevant (minimal surface generally): could typically contain a galaxy cluster.

Statistical geometry...

Two/three scale "time-scape" model

Split spatial volume $\mathcal{V} = \mathcal{V}_i \bar{a}^3$ as disjoint union of negatively curved void fraction with scale factor a_v and spatially flat "wall" fraction with scale factor a_w .

$$\bar{a}^{3} = f_{wi}a_{w}^{3} + f_{vi}a_{v}^{3} \equiv \bar{a}^{3}(f_{w} + f_{v})$$
$$f_{w} \equiv f_{wi}a_{w}^{3}/\bar{a}^{3}, \qquad f_{v} \equiv f_{vi}a_{v}^{3}/\bar{a}^{3}$$

• $f_{vi} = 1 - f_{wi}$ is the fraction of present epoch horizon volume which was in uncompensated underdense perturbations at last scattering.

$$\bar{H}(t) = \frac{\dot{\bar{a}}}{\bar{a}} = f_{w}H_{w} + f_{v}H_{v}; \qquad H_{w} \equiv \frac{1}{a_{w}}\frac{\mathrm{d}a_{w}}{\mathrm{d}t}, \quad H_{v} \equiv \frac{1}{a_{v}}\frac{\mathrm{d}a_{v}}{\mathrm{d}t}$$

Here t is the Buchert time parameter, considered as a collective coordinate of dust cell coarse-grained at SHS.

Past light cone average

Interpret solution of Buchert equations by radial null cone average

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \bar{a}^2(t)\,\mathrm{d}\bar{\eta}^2 + A(\bar{\eta},t)\,\mathrm{d}\Omega^2,$$

where $\int_0^{\bar{\eta}_{\mathcal{H}}}\mathrm{d}\bar{\eta}\,A(\bar{\eta},t) = \bar{a}^2(t)\mathcal{V}_\mathrm{i}(\bar{\eta}_{\mathcal{H}})/(4\pi).$

LTB metric but NOT an LTB solution

Physical interpretation

• Conformally match radial null geodesics of spherical Buchert geometry to those of finite infinity geometry with *uniform quasilocal Hubble flow* condition $dt = \bar{a} d\bar{\eta}$ and $d\tau_w = a_w d\eta_w$. But $dt = \bar{\gamma} d\tau_w$ and $a_w = f_{wi}^{-1/3} (1 - f_v) \bar{a}$. Hence *on radial null geodesics*

$$\mathrm{d}\eta_{\mathrm{w}} = \frac{f_{\mathrm{wi}}^{1/3} \mathrm{d}\bar{\eta}}{\bar{\gamma} \left(1 - f_{\mathrm{v}}\right)^{1/3}}$$

Define η_w by integral of above on radial null-geodesics.

Extend spatially flat wall geometry to dressed geometry

$$\mathrm{d}s^2 = -\mathrm{d}\tau_\mathrm{w}^2 + a^2(\tau_\mathrm{w}) \left[\mathrm{d}\bar{\eta}^2 + r_\mathrm{w}^2(\bar{\eta}, \tau_\mathrm{w}) \,\mathrm{d}\Omega^2\right]$$

where $r_{\rm w} \equiv \bar{\gamma} (1 - f_{\rm v})^{1/3} f_{\rm wi}^{-1/3} \eta_{\rm w}(\bar{\eta}, \tau_{\rm w})$, $a = \bar{a}/\bar{\gamma}$.

Dressed cosmological parameters

N.B. The extension is NOT an isometry

N.B.
$$ds_{fi}^2 = -d\tau_w^2 + a_w^2(\tau_w) \left[d\eta_w^2 + \eta_w^2 d\Omega^2 \right]$$

 $\rightarrow ds^2 = -d\tau_w^2 + a^2 \left[d\bar{\eta}^2 + r_w^2(\bar{\eta}, \tau_w) d\Omega^2 \right]$

- Extended metric is an effective "spherical Buchert geometry" adapted to wall rulers and clocks.
- Since $d\bar{\eta} = dt/\bar{a} = \bar{\gamma} d\tau_w/\bar{a} = d\tau_w/a$, this leads to *dressed* parameters which do not sum to 1, e.g.,

$$\Omega_M = \bar{\gamma}^3 \bar{\Omega}_M \, .$$

Dressed average Hubble parameter

$$H = \frac{1}{a} \frac{\mathrm{d}a}{\mathrm{d}\tau_{\mathrm{w}}} = \frac{1}{\bar{a}} \frac{\mathrm{d}\bar{a}}{\mathrm{d}\tau_{\mathrm{w}}} - \frac{1}{\bar{\gamma}} \frac{\mathrm{d}\bar{\gamma}}{\mathrm{d}\tau_{\mathrm{w}}}$$

Dressed cosmological parameters

H is greater than wall Hubble rate; smaller than void Hubble rate measured by wall (or any one set of) clocks

$$\bar{H}(t) = \frac{1}{\bar{a}} \frac{\mathrm{d}\bar{a}}{\mathrm{d}t} = \frac{1}{a_{\mathrm{v}}} \frac{\mathrm{d}a_{\mathrm{v}}}{\mathrm{d}\tau_{\mathrm{v}}} = \frac{1}{a_{\mathrm{w}}} \frac{\mathrm{d}a_{\mathrm{w}}}{\mathrm{d}\tau_{\mathrm{w}}} < H < \frac{1}{a_{\mathrm{v}}} \frac{\mathrm{d}a_{\mathrm{v}}}{\mathrm{d}\tau_{\mathrm{w}}}$$

- For tracker solution $H = (4f_v^2 + f_v + 4)/6t$
- Dressed average deceleration parameter

$$q = \frac{-1}{H^2 a^2} \frac{\mathrm{d}^2 a}{\mathrm{d}\tau_\mathrm{w}^2}$$

Can have q < 0 even though $\bar{q} = \frac{-1}{\bar{H}^2 \bar{a}^2} \frac{d^2 \bar{a}}{dt^2} > 0$; difference of clocks important.

Relative deceleration scale

By cosmological equivalence principle the instantaneous relative deceleration of backgrounds gives an instantaneous 4-acceleration of magnitude $\alpha = H_0 c \bar{\gamma} \dot{\bar{\gamma}} / (\sqrt{\bar{\gamma}^2 - 1})$ beyond which *weak field cosmological general relativity* will be changed from Newtonian expectations: (i) as absolute scale nearby; (ii) divided by Hubble parameter to large z.

• Relative *volume* deceleration of expanding regions of different local density/curvature, leads cumulatively to canonical clocks differing by $dt = \bar{\gamma}_w d\tau_w (\rightarrow \sim 35\%)$

Bare cosmological parameters

J.A.G. Duley, M.A. Nazer & DLW, CQG 30 (2013) 175006: full numerical solution with matter, radiation

Apparent cosmic acceleration

Volume average observer sees no apparent cosmic acceleration

$$\bar{q} = \frac{2\left(1 - f_{\rm v}\right)^2}{(2 + f_{\rm v})^2}.$$

As $t \to \infty$, $f_v \to 1$ and $\bar{q} \to 0^+$.

A wall observer registers apparent cosmic acceleration

$$q = \frac{-\left(1 - f_{\rm v}\right)\left(8f_{\rm v}^{3} + 39f_{\rm v}^{2} - 12f_{\rm v} - 8\right)}{\left(4 + f_{\rm v} + 4f_{\rm v}^{2}\right)^{2}},$$

Effective deceleration parameter starts at $q \sim \frac{1}{2}$, for small f_v ; changes sign when $f_v = 0.5867...$, and approaches $q \rightarrow 0^-$ at late times.

Cosmic coincidence not a problem

Dressed "comoving distance" D(z)

Equivalent "equation of state"?

A formal "dark energy equation of state" $w_L(z)$ for the TS model, with $f_{\rm V0} = 0.695$, calculated directly from $r_w(z)$: (i) $\Omega_{\rm M0} = 0.41$; (ii) $\Omega_{\rm M0} = 0.3175$.

Description by a "dark energy equation of state" makes no sense when there's no physics behind it; but average value $w_L \simeq -1$ for z < 0.7 makes empirical sense.

Planck data Λ **CDM parametric fit**

Duley, Nazer + DLW, CQG 30 (2013) 175006:

- Use angular scale, baryon drag scale from Λ CDM fit
- Baryon-photon ratio $\eta_{B\gamma} = 4.6-5.6 \times 10^{-10}$ within 2σ of all observed light element abundances (including ⁷Li).

Planck constraints D_A + r_{drag}

- Dressed Hubble constant $H_0 = 61.7 \pm 3.0 \, \text{km/s/Mpc}$
- **•** Bare Hubble constant $H_{w0} = \overline{H}_0 = 50.1 \pm 1.7$ km/s/Mpc
- Local max Hubble constant $H_{v0} = 75.2^{+2.0}_{-2.6}$ km/s/Mpc
- Present void fraction $f_{v0} = 0.695^{+0.041}_{-0.051}$
- Solution Bare matter density parameter $\bar{\Omega}_{M0} = 0.167^{+0.036}_{-0.037}$
- Dressed matter density parameter $\Omega_{\rm M0} = 0.41^{+0.06}_{-0.05}$
- Dressed baryon density parameter $\Omega_{\rm B0} = 0.074^{+0.013}_{-0.011}$
- Nonbaryonic/baryonic matter ratio $\Omega_{\rm C0}/\Omega_{\rm B0} = 4.6^{+2.5}_{-2.1}$
- \checkmark Age of universe (galaxy/wall) $\tau_{\rm w0} = 14.2 \pm 0.5\,{\rm Gyr}$
- Age of universe (volume-average) $t_0 = 17.5 \pm 0.6 \,\mathrm{Gyr}$
- Apparent acceleration onset $z_{\rm acc} = 0.46^{+0.26}_{-0.25}$

CMB acoustic peaks, $\ell > 50$ fit

CMB acoustic peaks: results

- Likelihood $-\ln \mathcal{L} = 3925.16$, 3897.90 and 3896.47 for $A(\bar{H}_{dec})$, W(k = 0) and $W(k \neq 0)$ methods respectively on $50 \le \ell \le 2500$, c.f., Λ CDM: 3895.5 using MINUIT or 3896.9 using CosmoMC.
- $H_0 = 61.0 \text{ km/s/Mpc} (\pm 1.3\% \text{ stat}) (\pm 8\% \text{ sys});$ $f_{v0} = 0.627 (\pm 2.33\% \text{ stat}) (\pm 13\% \text{ sys}).$
- Previous $D_A + r_{drag}$ constraints give concordance for baryon-to-photon ratio $10^{10}\eta_{B\gamma} = 5.1 \pm 0.5$ with no primordial ⁷Li anomaly, Ω_{C0}/Ω_{B0} possibly 30% lower.
- Full fit driven by 2nd/3rd peak heights, Ω_{C0}/Ω_{B0} , ratio gives $10^{10}\eta_{B\gamma} = 6.08$ (±1.5% stat) (±8.5% sys).
- With bestfit values, primordial ⁷Li anomalous and BOSS z = 2.34 result in tension at level similar to Λ CDM

Non-parametric CMB constraints

- What do we know without a cosmological model?

CMB sound horizon + BAO LRG / Lyman α

- Non-parametric CMB angular scale constraint (blue, 2σ)
- Baryon acoustic oscillations from BOSS (using FLRW model!) galaxy clustering statistics z = 0.38, 0.51, 0.61 (red, 2\sigma); Lyman \alpha forest z = 2.34 (pink, 2\sigma)

Supernovae: A Heinesen talk

- Smale + DLW, 2011, MNRAS 413: Different light curve fitters MLCS2k2 versus SALT/SALT2 gave different answers for preference of TS versus ΛCDM
- Dam, Heinesen & DLW, arXiv:1706.07236: applying Nielsen, Guffanti, Sarkar 2016 methodology, SALT2 results now consistent...much to say about systematics

Clarkson Bassett Lu test $\Omega_k(z)$

For Friedmann equation a statistic constant for all z

Left panel: CBL statistic from Sapone, Majerotto and Nesseris, PRD 90, 023012 (2014) Fig 8,

using existing data from SneIa (Union2) and passively evolving galaxies for H(z).

Right panel: TS prediction, with $f_{v0} = 0.695^{+0.041}_{-0.051}$.

Clarkson Bassett Lu test with Euclid

- Projected uncertainties for ACDM, with *Euclid* + 1000 Snela, Sapone *et al*, PRD 90, 023012 (2014) Fig 10
- Timescape prediction (green), compared to non-Copernican Gpc void model (blue), and *tardis* cosmology, Lavinto *et al* JCAP 12 (2013) 051 (brown).
- Timescape prediction becomes greater than uncertainties for $z \leq 1.5$. (Falsfiable.)

Redshift time drift (Sandage–Loeb test)

 $H_0^{-1} \frac{\mathrm{d}z}{\mathrm{d}\tau}$ for the TS model with $f_{\mathrm{V}0} = 0.76$ (solid line) is compared to three spatially flat Λ CDM models.

Measurement is extremely challenging. May be feasible over a 10–20 year period by precision measurements of the Lyman- α forest over redshift 2 < z < 5 with next generation of Extremely Large Telescopes

Back to the early Universe

- BUT backreaction in primordial plasma neglected
- Backreaction of similar order to density perturbations (10⁻⁵); little influence on background but may influence growth of perturbations
- First step: add pressure to new "relativistic Lagrangian formalism": Buchert et al, PRD 86 (2012) 023520; PRD 87 (2013) 123503; Alles et al, PRD 92 (2015) 023512
- Rewrite whole of cosmological perturbation theory
- Formalism adapted to fluid frames ("Lagrangian") not hypersurfaces ("Eulerian"). Backreaction effects small in early Universe – debates can be resolved?

Relativistic computational cosmology

- Full general numerical simulations using (BSSN (Baumgarte-Shapiro-Shibata-Nakamura) formalism beginning
 - Mertens, Giblin, Starkman, PRL 116 (2016) 251301
 - Bruni, Bentivenga, PRL 116 (2016) 251302
 - Macpherson, Lasky, Price, PRD 95 (2017) 064028
- Structures from faster than spherical collapse model
- Expect decades of development
- E.g., Bruni & Bentivenga must stop codes when $\delta \rho / \rho \sim 2$ in overdensities (at effective redshift z = 260), no chance for void dominated backreaction yet
- Consistent excision of collapsing region (finite infinity scale) a huge challenge; again a Lagrangian approach desirable

Conclusion: Why is Λ **CDM so successful?**

- Early Universe was extremely close to homogeneous and isotropic, leading to a simplifying principle – Cosmological Equivalence Principle ?
- Finite infinity geometry (2 15 h⁻¹Mpc) is close to spatially flat (Einstein–de Sitter at late times) – N–body simulations successful *for bound structure*
- Hubble parameter (first derivative of statistical metric;
 i.e., connection) is to some extent observer dependent
- Even on small scales there is a notion of uniform Hubble flow at expense of calibration of rulers AND CLOCKS
- Testable alternative cosmologies timescape or otherwise – are needed to change nature of debate, and better understand systematics, selection biases
 - "Modified Geometry" rather than "Modified Gravity"